VARIABLE SELECTION IN ROBUST JOINT MEAN AND COVARIANCE MODEL FOR LONGITUDINAL DATA ANALYSIS

被引:18
|
作者
Zheng, Xueying [1 ]
Fung, Wing Kam [2 ]
Zhu, Zhongyi [3 ]
机构
[1] Fudan Univ, Dept Biostat, Shanghai 200433, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[3] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Covariance matrix; penalized generalized estimating equation; longitudinal data; modified cholesky decomposition; robustness; variable selection; GENERALIZED LINEAR-MODELS; ESTIMATING EQUATIONS; SEMIPARAMETRIC ESTIMATION; REGRESSION-MODELS; ORACLE PROPERTIES; MATRICES; LIKELIHOOD; DIAGNOSTICS;
D O I
10.5705/ss.2011.251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In longitudinal data analysis, a correct specification of the within-subject covariance matrix cultivates an efficient estimation for mean regression coefficients. In this article, we consider robust variable selection method in a joint mean and covariance model. We propose a set of penalized robust generalized estimating equations to simultaneously estimate the mean regression coefficients, the generalized autoregressive coefficients, and innovation variances introduced by the modified Cholesky decomposition. The set of estimating equations select important covariate variables in both mean and covariance models together with the estimating procedure. Under some regularity conditions, we develop the oracle property of the proposed robust variable selection method. Finally, a simulation study and a detailed data analysis are carried out to assess and illustrate the small sample performance; they show that the proposed method performs favorably by combining the robustifying and penalized estimating techniques together in the joint mean and covariance model.
引用
收藏
页码:515 / 531
页数:17
相关论文
共 50 条
  • [41] Multivariate contaminated normal mixture regression modeling of longitudinal data based on joint mean-covariance model
    Niu, Xiaoyu
    Tian, Yuzhu
    Tang, Manlai
    Tian, Maozai
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [42] Robust mean and covariance structure analysis
    Yuan, KH
    Bentler, PM
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1998, 51 : 63 - 88
  • [43] Robust estimation of covariance parameters in partial linear model for longitudinal data
    Qin, Guoyou
    Zhu, Zhongyi
    Fung, Wing K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 558 - 570
  • [44] Robust and smoothing variable selection for quantile regression models with longitudinal data
    Fu, Z. C.
    Fu, L. Y.
    Song, Y. N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2600 - 2624
  • [45] Robust variable selection in semiparametric mixed effects longitudinal data models
    Sun, Huihui
    Liu, Qiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (03) : 1049 - 1064
  • [46] Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis
    Fu, Liya
    Yang, Zhuoran
    Cai, Fengjing
    Wang, You-Gan
    COMPUTATIONAL STATISTICS, 2021, 36 (02) : 781 - 804
  • [47] Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis
    Liya Fu
    Zhuoran Yang
    Fengjing Cai
    You-Gan Wang
    Computational Statistics, 2021, 36 : 781 - 804
  • [48] MODEL SELECTION TECHNIQUES FOR THE COVARIANCE-MATRIX FOR INCOMPLETE LONGITUDINAL DATA
    GRADY, JJ
    HELMS, RW
    STATISTICS IN MEDICINE, 1995, 14 (13) : 1397 - 1416
  • [49] Joint model selection of marginal mean regression and correlation structure for longitudinal data with missing outcome and covariates
    Shen, Chung-Wei
    Chen, Yi-Hau
    BIOMETRICAL JOURNAL, 2018, 60 (01) : 20 - 33
  • [50] Variable selection in semiparametric regression analysis for longitudinal data
    Peixin Zhao
    Liugen Xue
    Annals of the Institute of Statistical Mathematics, 2012, 64 : 213 - 231