Local uniqueness for Nash solutions of multiparameter singularly perturbed systems

被引:8
|
作者
Mukaidani, Hiroaki [1 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Hiroshima 7398530, Japan
关键词
cross-coupled algebraic Riccati equation (CARE); general multiparameter singularly perturbed systems (GMSPS); local uniqueness; Nash games; parameter-independent Nash strategy;
D O I
10.1109/TCSII.2006.882211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, linear quadratic infinite-horizon Nash games for general multiparameter singularly perturbed systems are studied. The local uniqueness and the asymptotic structure of the solutions to the cross-coupled multiparameter algebraic Riccati equation (CMARE) are newly established. Utilizing the asymptotic structure of the solutions to the CMARE, the parameter-independent Nash strategy is established. A numerical example is given to demonstrate the efficiency and feasibility of the proposed analysis.
引用
收藏
页码:1103 / 1107
页数:5
相关论文
共 50 条
  • [31] D-stability bound analysis for discrete multiparameter singularly perturbed systems
    Hsiao, FH
    Pan, ST
    Teng, CC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (04): : 347 - 351
  • [32] Recursive approach of optimal Kalman filtering problem for multiparameter singularly perturbed systems
    Mukaidani, H
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2005, 36 (01) : 1 - 11
  • [33] ON UNIQUENESS AND STABILITY FOR SOLUTIONS OF SINGULARLY PERTURBED PREDATOR PREY TYPE EQUATIONS WITH DIFFUSION
    DANCER, EN
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 102 (01) : 1 - 32
  • [34] ON THE MULTIPLE SPIKE SOLUTIONS FOR SINGULARLY PERTURBED ELLIPTIC SYSTEMS
    Wang, Weichung
    Wu, Tsung-Fang
    Liu, Chien-Hsiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 237 - 258
  • [35] STABILITY OF THE SOLUTIONS OF SINGULARLY PERTURBED SYSTEMS WITH IMPULSE EFFECT
    SIMEONOV, PS
    BAINOV, DD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 136 (02) : 575 - 588
  • [36] Local dynamics of nonlinear singularly perturbed delay systems
    Kashchenko, SA
    DIFFERENTIAL EQUATIONS, 1999, 35 (10) : 1360 - 1373
  • [37] Closeness of Solutions for Singularly Perturbed Systems via Averaging
    Deghat, Mohammad
    Ahmadizadeh, Saeed
    Nesic, Dragan
    Manzie, Chris
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3110 - 3115
  • [38] STABILITY OF THE SOLUTIONS OF SINGULARLY PERTURBED SYSTEMS WITH IMPULSE EFFECT
    SIMEONOV, PS
    BAINOV, DD
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1986, 5 (02) : 95 - 108
  • [39] BOUNDARY LAYER SOLUTIONS TO SINGULARLY PERTURBED QUASILINEAR SYSTEMS
    Butuzov, Valentin
    Nefedov, Nikolay
    Omel'chenko, Oleh
    Recke, Lutz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08): : 4255 - 4283
  • [40] New results for near-optimal control of linear multiparameter singularly perturbed systems
    Mukaidani, H
    Xu, H
    Mizukami, K
    AUTOMATICA, 2003, 39 (12) : 2157 - 2167