Solving incremental MAX-SAT

被引:0
|
作者
Mouhoub, M [1 ]
机构
[1] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
来源
INTELLIGENT AND ADAPTIVE SYSTEMS AND SOFTWARE ENGINEERING | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The maximum satisfiability problem (MAX-SAT) consists of finding a truth assignment that satisfies the maximum possible number of clauses in a given formula in CNF form. In this paper, we introduce the incremental MAX-SAT problem which focuses on maintaining the maximum satisfiability of a propositional formula anytime a conjunction of new clauses is added. More precisely, the goal here is to check whether the maximum number of clauses is maintained after a new set of clauses is added and if not, look for a new maximum in an incremental manner. We will investigate the applicability of different methods based on exact and approximation algorithms for solving incremental MAX-SAT problems. The exact algorithm is a branch and bound technique while the approximation techniques rely on stochastic local search and genetic algorithms.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [31] Report on SAT competition and Max-SAT evaluation
    Nabeshima, Hidetomo
    Koshimura, Miyuki
    Banbara, Mutsunori
    Computer Software, 2012, 29 (04) : 9 - 14
  • [32] Solving the weighted MAX-SAT problem using the dynamic convexized method
    Zhu, Wenxing
    Yan, Yuanhui
    OPTIMIZATION LETTERS, 2014, 8 (01) : 359 - 374
  • [33] Discrete Lagrangian-based search for solving MAX-SAT problems
    Wah, BW
    Shang, Y
    IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 378 - 383
  • [34] Three Truth Values for the SAT and MAX-SAT Problems
    Lardeux, Frederic
    Saubion, Frederic
    Hao, Jin-Kao
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 187 - 192
  • [35] New inference rules for max-SAT
    LaRIA, Université de Picardie Jules Verne, 33 Rue St. Leu, 80039 Amiens Cedex 01, France
    不详
    不详
    J Artif Intell Res, 2007, (321-359):
  • [36] Improved exact algorithms for MAX-SAT
    Chen, J
    Kanj, IA
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 341 - 355
  • [37] Computing Max-SAT Refutations using SAT Oracles
    Py, Matthieu
    Cherif, Mohamed Sami
    Habet, Djamal
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 404 - 411
  • [38] A multilevel synergy Thompson sampling hyper-heuristic for solving Max-SAT
    Lassouaoui, Mourad
    Boughaci, Dalila
    Benhamou, Belaid
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (02): : 193 - 210
  • [39] Parallel ACS for weighted MAX-SAT
    Drias, H
    Ibri, S
    COMPUTATIONAL METHODS IN NEURAL MODELING, PT 1, 2003, 2686 : 414 - 421
  • [40] Weight redistribution for unweighted MAX-SAT
    Ishtaiwi, Abdelraouf
    Thornton, John
    Sattar, Abdul
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 687 - 693