RGB-D object detection and semantic segmentation for autonomous manipulation in clutter

被引:123
|
作者
Schwarz, Max [1 ]
Milan, Anton [2 ]
Periyasamy, Arul Selvam [1 ]
Behnke, Sven [1 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] Univ Adelaide, Adelaide, SA, Australia
来源
基金
欧盟地平线“2020”;
关键词
Deep learning; object perception; RGB-D camera; transfer learning; object detection; semantic segmentation;
D O I
10.1177/0278364917713117
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous robotic manipulation in clutter is challenging. A large variety of objects must be perceived in complex scenes, where they are partially occluded and embedded among many distractors, often in restricted spaces. To tackle these challenges, we developed a deep-learning approach that combines object detection and semantic segmentation. The manipulation scenes are captured with RGB-D cameras, for which we developed a depth fusion method. Employing pretrained features makes learning from small annotated robotic datasets possible. We evaluate our approach on two challenging datasets: one captured for the Amazon Picking Challenge 2016, where our team NimbRo came in second in the Stowing and third in the Picking task; and one captured in disaster-response scenarios. The experiments show that object detection and semantic segmentation complement each other and can be combined to yield reliable object perception.
引用
收藏
页码:437 / 451
页数:15
相关论文
共 50 条
  • [21] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [22] RGB×D: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    Neurocomputing, 2021, 462 : 568 - 580
  • [23] Regularized Fully Convolutional Networks for RGB-D Semantic Segmentation
    Su, Wen
    Wang, Zengfu
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [24] Automatic Network Architecture Search for RGB-D Semantic Segmentation
    Wang, Wenna
    Zhuo, Tao
    Zhang, Xiuwei
    Sun, Mingjun
    Yin, Hanlin
    Xing, Yinghui
    Zhang, Yanning
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3777 - 3786
  • [25] Autonomous object manipulation and transportation using a mobile service robot equipped with an RGB-D and LiDAR sensor
    Garcia Jimenez, David de Jesus
    Olvera, Tomas
    Orozco-Rosas, Ulises
    Picos, Kenia
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XV, 2021, 11841
  • [26] Semantic Progressive Guidance Network for RGB-D Mirror Segmentation
    Li, Chao
    Zhou, Wujie
    Zhou, Xi
    Yan, Weiqing
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2780 - 2784
  • [27] Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation
    Zhu, Xingyu
    Wang, Xin
    Freer, Jonathan
    Chang, Hyung Jin
    Gao, Yixing
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9471 - 9477
  • [28] Small Obstacle Avoidance Based on RGB-D Semantic Segmentation
    Hua, Minjie
    Nan, Yibing
    Lian, Shiguo
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 886 - 894
  • [29] Accurate semantic segmentation of RGB-D images for indoor navigation
    Sharan, Sudeep
    Nauth, Peter
    Dominguez-Jimenez, Juan-Jose
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [30] Cascaded Feature Network for Semantic Segmentation of RGB-D Images
    Lin, Di
    Chen, Guangyong
    Daniel Cohen-Or
    Heng, Pheng-Ann
    Huang, Hui
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1320 - 1328