Stabilization of Magnetic Skyrmions on Arrays of Self-Assembled Hexagonal Nanodomes for Magnetic Recording Applications

被引:23
|
作者
Tejo, Felipe [1 ,2 ,3 ]
Toneto, Denilson [4 ]
Oyarzun, Simon [1 ,2 ]
Hermosilla, Jose [1 ]
Danna, Caroline S. [1 ]
Palma, Juan L. [2 ,5 ]
da Silva, Ricardo B. [4 ]
Dorneles, Lucio S. [4 ]
Denardin, Juliano C. [1 ,2 ]
机构
[1] Univ Santiago Chile, Dept Fis, Santiago 9170124, Chile
[2] Univ Santiago Chile, CEDENNA, Santiago, Chile
[3] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain
[4] Univ Fed Santa Maria, Dept Fis, UFSM, BR-97105900 Santa Maria, RS, Brazil
[5] Univ Cent Chile, Escuela Ingn, Santiago 8330601, Chile
关键词
magnetic skyrmion; nanodomes; magnetic anisotropy; magnetic memory devices; magnetic multilayers;
D O I
10.1021/acsami.0c14350
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic skyrmions are nontrivial spin textures that resist external perturbations, being promising candidates for the next-generation recording devices. Nevertheless, a major challenge in realizing skyrmion-based devices is the stabilization of ordered arrays of these spin textures under ambient conditions and zero applied field. Here, we demonstrate for the first time the formation and stabilization of magnetic skyrmions on the arrays of self-assembled hexagonal nanodomes taking advantage of the intrinsic properties of its curved geometry. Magnetic force microscopy images from the arrays of 100 nm nanodomes showed stable skyrmions at the zero field that are arranged following the topography of the nanostructure. Micromagnetic simulations are compared to the experiments to determine the correlation of the domain textures with the topography of the samples. We propose a simple method to nucleate and annihilate skyrmions, opening the possibility for an ultradense data storage based on the high stability and low energy consumption of the skyrmionic textures.
引用
收藏
页码:53454 / 53461
页数:8
相关论文
共 50 条
  • [31] Magnetic Reprogramming of Self-Assembled Hard-Magnetic Cilia
    Clary, Matthew R.
    Cantu, Saarah N.
    Liu, Jessica A. -C.
    Evans, Benjamin A.
    Tracy, Joseph B.
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (13):
  • [32] Field evolution of self-assembled lattice structures of ferrofluid microdroplets on magnetic disc arrays
    Lee, Chiun Peng
    Tsai, Hsin Yi
    Lai, Mei Feng
    SOFT MATTER, 2012, 8 (45) : 11537 - 11543
  • [33] Structure and magnetic properties of CoxCu1-x nanowires in self-assembled arrays
    Kashi, M. Almasi
    Ramazani, A.
    Najafabadi, F. Adelnia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 540 : 133 - 136
  • [34] Structure and magnetic properties of Fe1-xCox nanowires in self-assembled arrays
    Yue, G. H.
    Wang, X.
    Wang, L. S.
    Chang, P.
    Wen, R. T.
    Chen, Y. Z.
    Peng, D. L.
    ELECTROCHIMICA ACTA, 2009, 54 (26) : 6543 - 6547
  • [35] Magnetic Tunnel Junctions with Self-Assembled Molecules
    Wang, Wenyong
    Richter, Curt A.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1008 - 1010
  • [36] Magnetic manipulation of self-assembled colloidal asters
    Snezhko A.
    Aranson I.S.
    Nature Materials, 2011, 10 (9) : 698 - 703
  • [37] High-yield solvothermal synthesis of magnetic chains self-assembled by hexagonal cobalt microflakes
    Liu, Meiying
    Chen, Linlin
    Lin, Chunming
    Shan, Nannan
    Li, Xiaoqian
    Li, Bona
    MATERIALS LETTERS, 2012, 74 : 167 - 169
  • [38] Modeling of magnetization in self-assembled magnetic nanocubes
    Wang, Cong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [39] Self-assembled magnetic nanostripes by organic patterning
    Ma, X
    Meyerheim, HL
    Barthel, J
    Kirschner, J
    Schmitt, S
    Umbach, E
    APPLIED PHYSICS LETTERS, 2004, 84 (20) : 4038 - 4040
  • [40] Magnetic properties of self-assembled interacting nanoparticles
    Kechrakos, D
    Trohidou, KN
    APPLIED PHYSICS LETTERS, 2002, 81 (24) : 4574 - 4576