The Magid-Ryan conjecture for 4-dimensional affine spheres

被引:4
|
作者
Bergen, E [1 ]
Ramakers, E [1 ]
Vrancken, L [1 ]
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
关键词
D O I
10.1007/BF02940868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the Magid-Ryan conjecture for 4-dimensional affine hyperspheres in R-5. This conjecture states that every affine hypersphere with non-zero Pick invariant and constant sectional curvature is affinely equivalent with either (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/- x(2m)(2)) = 1 or (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/- x(2m)(2))x(2m+1) = 1 where the dimension n satisfies n = 2m or n = 2m + 1. This conjecture was proved in [11] in case the metric is positive definite and in [2] in case the metric is Lorentzian.
引用
收藏
页码:139 / 157
页数:19
相关论文
共 50 条