Studying edge geometry in transiently turbulent shear flows

被引:14
|
作者
Chantry, Matthew [1 ]
Schneider, Tobias M. [2 ,3 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[3] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
instability; nonlinear dynamical systems; transition to turbulence; PLANE COUETTE-FLOW; TRANSITIONAL PIPE-FLOW; BOUNDARY; DYNAMICS; STATES; MODELS;
D O I
10.1017/jfm.2014.150
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In linearly stable shear flows at moderate Reynolds number, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories, we provide evidence that the edge of chaos does not separate state space globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.
引用
收藏
页码:506 / 517
页数:12
相关论文
共 50 条
  • [21] Modeling of turbulent free shear flows
    Yoder, D. A.
    DeBonis, J. R.
    Georgiadis, N. J.
    COMPUTERS & FLUIDS, 2015, 117 : 212 - 232
  • [22] TURBULENT SHEAR FLOWS OF VARIABLE DENSITY
    LAUFER, J
    AIAA JOURNAL, 1969, 7 (04) : 706 - &
  • [23] ENTRAINMENT RATES IN TURBULENT SHEAR FLOWS
    PAIZIS, ST
    SCHWARZ, WH
    JOURNAL OF FLUID MECHANICS, 1975, 68 (MAR25) : 297 - 308
  • [24] PARTICLE DISPERSION IN SHEAR TURBULENT FLOWS
    LU, QQ
    FONTAINE, JR
    AUBERTIN, G
    AEROSOL SCIENCE AND TECHNOLOGY, 1993, 18 (01) : 85 - 99
  • [25] POINTS OF SYMMETRY IN TURBULENT SHEAR FLOWS
    ANTONIA, RA
    CHAMBERS, AJ
    ELENA, M
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1983, 10 (05) : 395 - 402
  • [26] DIFFUSION FLAMES IN TURBULENT SHEAR FLOWS
    BUSH, WB
    FENDELL, FE
    ACTA ASTRONAUTICA, 1974, 1 (5-6) : 645 - 666
  • [27] A NEW MODEL ON TURBULENT SHEAR FLOWS
    EGOLF, PW
    HELVETICA PHYSICA ACTA, 1991, 64 (06): : 944 - 945
  • [28] Turbulent shear flows on a sparse grid
    De Lillo, F.
    Eckhardt, B.
    ADVANCES IN TURBULENCE XI, 2007, 117 : 355 - 357
  • [29] ON NEARLY HOMOGENOUS TURBULENT SHEAR FLOWS
    SZABLEWSKI, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (08): : 335 - 342
  • [30] Algebraic Growth in Turbulent Shear Flows
    Sen, P. K.
    Veeravalli, Srinivas V.
    Kumar, T. Vijaya
    Hegde, S.
    8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2019, 2121