Scaling properties of generalized Carlitz sequences of polynomials

被引:2
|
作者
Barbé, A
von Haeseler, F
Skordev, G
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
[2] Univ Bremen, Cevis, D-28359 Bremen, Germany
关键词
polynomial sequences; number representations; numeration systems; scaling; geometric limits; self-similarity; fractals;
D O I
10.1016/j.dam.2004.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider graphical representations of generalized Carlitz sequences of polynomials. These generalized Carlitz sequences are based on certain numeration systems of the natural numbers. We establish conditions under which a sequence of properly rescaled graphical representations converges to a limit (w.r.t. Hausdorff distance). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 181
页数:16
相关论文
共 50 条