DYNAMIC OUTPUT FEEDBACK CONTROL OF DISCRETE-TIME MARKOV JUMP LINEAR SYSTEMS THROUGH LINEAR MATRIX INEQUALITIES

被引:81
|
作者
Geromel, Jose C. [1 ]
Goncalves, Alim P. C. [1 ]
Fioravanti, Andre R. [2 ]
机构
[1] Univ Estadual Campinas, DSCE, Sch Elect & Comp Engn, BR-13081970 Campinas, SP, Brazil
[2] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
基金
巴西圣保罗研究基金会;
关键词
linear systems; discrete-time systems; stochastic systems; Markov jump linear systems; linear matrix inequalities; STABILITY; STATE; H-2-CONTROL; PARAMETERS;
D O I
10.1137/080715494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the H-2 and H-infinity dynamic output feedback control design problems of discrete-time Markov jump linear systems. Under the mode-dependent assumption, which means that the Markov parameters are available for feedback, the main contribution is the complete characterization of all full order proper Markov jump linear controllers such that the H2 or H-infinity norm of the closed loop system remains bounded by a given prespecified level, yielding the global solution to the corresponding mode-dependent optimal control design problem, expressed in terms of pure linear matrix inequalities. Some academic examples are solved for illustration and comparison. As a more consequent practical application, the networked control of a vehicle platoon using measurement signals transmitted in a Markov channel, as initially proposed in [P. Seiler and R. Sengupta, IEEE Trans. Automat. Control, 50 (2005), pp. 356-364], is considered.
引用
收藏
页码:573 / 593
页数:21
相关论文
共 50 条
  • [21] Discrete-time output feedback sliding-mode control design for uncertain systems using linear matrix inequalities
    Govindaswamy, Srinath
    Spurgeon, Sarah K.
    Floquet, Thierry
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (05) : 916 - 930
  • [22] Optimal output feedback control for discrete-time Markov jump linear system with input delay and packet losses
    Liu, Yue
    Han, Chunyan
    Wang, Xiaohong
    Wang, Wei
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (02): : 395 - 416
  • [23] The linear quadratic optimal control problem for discrete-time Markov jump linear singular systems
    Chavez-Fuentes, Jorge R.
    Costa, Eduardo F.
    Terra, Marco H.
    Rocha, Kaio D. T.
    AUTOMATICA, 2021, 127
  • [24] A new look at the robust control of discrete-time Markov jump linear systems
    Todorov, M. G.
    Fragoso, M. D.
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (03) : 518 - 534
  • [25] Robust stability and control of uncertain discrete-time Markov jump linear systems
    de Souza, CE
    2005 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), VOLS 1AND 2, 2005, : 434 - 439
  • [26] Output Feedback Control for a Class of Switching Discrete-Time Linear Systems
    Alessandri, A.
    Bedouhene, F.
    Kheloufi, H.
    Zemouche, A.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1533 - 1538
  • [27] FIR Filtering for Discrete-Time Markov Jump Linear Systems
    Wen, Ji-Wei
    Liu, Fei
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2011, 30 (06) : 1149 - 1164
  • [28] Quantized H∞ output feedback control for linear discrete-time systems
    Lu, Renquan
    Zhou, Xingxing
    Wu, Fang
    Xue, Anke
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (08): : 2096 - 2108
  • [29] Linear Estimation for Discrete-time Systems with Markov Jump Delays
    Han, Chunyan
    Zhang, Huanshui
    Fu, Minyue
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 981 - 987
  • [30] Linear Estimation for Discrete-time Systems with Markov Jump Delays
    Han Chunyan
    Zhang Huanshui
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 100 - 104