Spline Collocation for Fractional Integro-Differential Equations

被引:4
|
作者
Pedas, Arvet [1 ]
Tamme, Enn [1 ]
Vikerpuur, Mikk [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
BOUNDARY-VALUE-PROBLEMS; PIECEWISE POLYNOMIAL COLLOCATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; ORDER;
D O I
10.1007/978-3-319-20239-6_34
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a class of boundary value problems for fractional integro-differential equations. Using an integral equation reformulation of the boundary value problem, we first study the regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the boundary value problem by suitable non-polynomial approximations is discussed. Optimal global convergence estimates are derived and a super-convergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 50 条
  • [21] ADI orthogonal spline collocation methods for parabolic partial integro-differential equations
    Pani, Amiya Kumar
    Fairweather, Graeme
    Fernandes, Ryan I.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (01) : 248 - 276
  • [22] Application of the collocation method for solving nonlinear fractional integro-differential equations
    Eslahchi, M. R.
    Dehghan, Mehdi
    Parvizi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 105 - 128
  • [23] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Shiva Sharma
    Rajesh K. Pandey
    Kamlesh Kumar
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1649 - 1656
  • [24] A spline collocation method for linear Volterra integro-differential equations with weakly singular kernels
    Brunner, H
    Pedas, A
    Vainikko, G
    BIT, 2001, 41 (05): : 891 - 900
  • [25] A Spline Collocation Method for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels
    H. Brunner
    A. Pedas
    G. Vainikko
    BIT Numerical Mathematics, 2001, 41 : 891 - 900
  • [26] Spectral Collocation Methods for Fractional Integro-Differential Equations with Weakly Singular Kernels
    Shi, Xiulian
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [27] An efficient spline technique for solving time-fractional integro-differential equations
    Abbas, Muhammad
    Aslam, Sadia
    Abdullah, Farah Aini
    Riaz, Muhammad Bilal
    Gepreel, Khaled A.
    HELIYON, 2023, 9 (09)
  • [28] Integro-Differential Equations of Fractional Order
    Saïd Abbas
    Mouffak Benchohra
    John R. Graef
    Differential Equations and Dynamical Systems, 2012, 20 (2) : 139 - 148
  • [29] Integro-Differential Equations of Fractional Order
    Abbas, Said
    Benchohra, Mouffak
    Graef, John R.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2012, 20 (02) : 139 - 148
  • [30] BDF2 ADI orthogonal spline collocation method for the fractional integro-differential equations of parabolic type in three dimensions
    Wang, Ruru
    Yan, Yubin
    Hendy, A. S.
    Qiao, Leijie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 155 : 126 - 141