Effects of aerosol modulation transfer function on target identification

被引:5
|
作者
Butrimas, Steve [1 ]
Driggers, Ronald [1 ]
Holst, Gerald [2 ]
Kopeika, Norman S. [3 ]
Zilberman, Arkadi [3 ]
机构
[1] Univ Cent Florida, Coll Opt & Photon, Orlando, FL 32816 USA
[2] JCD Publishing Co, Oviedo, FL USA
[3] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
关键词
aerosol modulation transfer function; scattering; absorption; imaging performance; target identification; target task performance; INSTRUMENTATION-BASED THEORY; IMAGE QUALITY; ATMOSPHERE; VERIFICATION; RESTORATION; ABSORPTION; SCATTERING; HAZE; FOG;
D O I
10.1117/1.OE.59.7.073103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Atmospheric aerosol effects are often overlooked in target acquisition studies. Typically, performance models only consider extinction and turbulence within the prediction processes. The aerosol modulation transfer function (MTF) is included in range acquisition algorithms to determine how scattering and absorption effects change the target identification predictions. We modeled the aerosols as monodisperse water droplets comparable to a tenuous fog or mist. Integrating the aerosol MTF into the system MTF gives the opportunity to utilize the night vision integrated performance model to predict the target identification range with aerosol contributions. The aerosol MTF is a function of range, water droplet composition, wavelength, and aperture size. The analysis focuses on these variables with an emphasis on wavelength dependence to characterize mid-wave and long-wave performance. Results show that the mid-wave systems have a substantial diffraction advantage over long-wave systems. Only in the limit of increasing optical depths do the mid-wave and long-wave performance models begin to converge, verifying that the aerosols can be the limiting factor for target identification. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Effects of processing steps with an edge image on determining the presampled modulation transfer function
    Ye-seul Kim
    Hye-Suk Park
    Hee-Joung Kim
    Journal of the Korean Physical Society, 2012, 61 : 135 - 140
  • [42] Effects of motion of an imaging system and optical image stabilizer on the modulation transfer function
    Choi, Hyun
    Kim, Jong-Pil
    Song, Myeong-Gyu
    Kim, Wan-Chin
    Park, No-Cheol
    Park, Young-Pil
    Park, Kyoung-Su
    OPTICS EXPRESS, 2008, 16 (25) : 21132 - 21141
  • [43] Modulation transfer function for infrared reflectarrays
    Antonio Gomez-Pedrero, Jose
    Ginn, James
    Alda, Javier
    Boreman, Glenn
    APPLIED OPTICS, 2011, 50 (27) : 5344 - 5350
  • [44] MODULATION TRANSFER-FUNCTION OF RADIOGRAPH
    MEILER, J
    FORTSCHRITTE AUF DEM GEBIETE DER RONTGENSTRAHLEN UND DER NUKLEARMEDIZIN, 1976, 125 (06): : 559 - 563
  • [45] MODULATION TRANSFER FUNCTION OF NATURAL HYDROSOLS
    BEARDSLE.GF
    ZANEVELD, JR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (05) : 716 - &
  • [46] TEMPORAL MODULATION TRANSFER FUNCTION FOR PIGEON
    GRAF, VA
    PSYCHONOMIC SCIENCE, 1971, 25 (01): : 54 - &
  • [47] Spherical aberration and modulation transfer function
    Li, Qinghui
    Shao, Xiaopeng
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [48] Demonstrating the temporal modulation transfer function
    Anstis, S
    Kontsevich, L
    Tyler, C
    PERCEPTION, 1999, 28 (05) : 623 - 626
  • [49] Atmospheric modulation transfer function in the infrared
    Buskila, K
    Towito, S
    Shmuel, E
    Levi, R
    Kopeika, N
    Krapels, K
    Driggers, RG
    Vollmerhausen, RH
    Halford, CE
    APPLIED OPTICS, 2004, 43 (02) : 471 - 482
  • [50] MODULATION TRANSFER FUNCTION OF AN IRREGULAR MEDIUM
    ORHAUG, T
    ARKIV FOR FYSIK, 1968, 37 (04): : 410 - &