Total Variation Regularized Collaborative Representation Clustering With a Locally Adaptive Dictionary for Hyperspectral Remote Sensing Imagery

被引:0
|
作者
Zhai, Han [1 ]
Zhang, Hongyan [1 ]
Zhang, Liangpei [1 ]
Li, Pingxiang [1 ]
机构
[1] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
关键词
Hyperspectral image; collaborative representation clustering; locally adaptive dictionary; total variation; SEGMENTATION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral remote sensing imagery. With regard to the high redundancy of the global dictionary and the interference of unrelated dictionary atoms in the representation process, the collaborative representation clustering model with a locally adaptive dictionary is introduced to more precisely represent each pixel only with highly correlated atoms. In addition, total variation regularization is integrated to better account for the rich spatial contextual information. The extensive experimental results clearly illustrate the superiority of the proposed algorithm.
引用
收藏
页码:3755 / 3758
页数:4
相关论文
共 50 条
  • [21] Hyperspectral anomaly detection based on adaptive background dictionary construction and collaborative representation
    Xu, Mingming
    Zhang, Jinhao
    Liu, Shanwei
    Sheng, Hui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3349 - 3369
  • [22] Total Variation and Sparsity Regularized Decomposition Model With Union Dictionary for Hyperspectral Anomaly Detection
    Cheng, Tongkai
    Wang, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1472 - 1486
  • [23] A survey on representation-based classification and detection in hyperspectral remote sensing imagery
    Li, Wei
    Du, Qian
    PATTERN RECOGNITION LETTERS, 2016, 83 : 115 - 123
  • [24] Unsupervised Hyperspectral Remote Sensing Image Clustering Based on Adaptive Density
    Xie, Huan
    Zhao, Ang
    Huang, Shengyu
    Han, Jie
    Liu, Sicong
    Xu, Xiong
    Luo, Xin
    Pan, Haiyan
    Du, Qian
    Tong, Xiaohua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 632 - 636
  • [25] Features reduction collaborative fuzzy clustering for hyperspectral remote sensing images analysis
    Trong Hop Dang
    Viet Duc Do
    Dinh Sinh Mai
    Long Thanh Ngo
    Le Hung Trinh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 7739 - 7752
  • [26] LOCALLY CONSTRAINED COLLABORATIVE REPRESENTATION BASED FISHER'S LDA FOR CLUSTERING OF HYPERSPECTRAL IMAGES
    Liu, Siyu
    Huang, Nan
    Xiao, Liang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1046 - 1049
  • [27] Adaptive Multiobjective Memetic Fuzzy Clustering Algorithm for Remote Sensing Imagery
    Ma, Ailong
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08): : 4202 - 4217
  • [28] Spatial-Aware Collaborative Representation for Hyperspectral Remote Sensing Image Classification
    Jiang, Junjun
    Chen, Chen
    Yu, Yi
    Jiang, Xinwei
    Ma, Jiayi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (03) : 404 - 408
  • [29] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION USING COLLABORATIVE REPRESENTATION WITH LOCAL ADAPTIVE DICTIONARY PAIR
    Zhao, Tuo
    Zhang, Yifan
    Xue, Xiaoqin
    He, Mingyi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7212 - 7215
  • [30] An Adaptive Differential Evolution Endmember Extraction Algorithm for Hyperspectral Remote Sensing Imagery
    Zhong, Yanfei
    Zhao, Lin
    Zhang, Liangpei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) : 1061 - 1065