Registration of digital retinal images using landmark correspondence by expectation maximization

被引:66
|
作者
Ryan, N [1 ]
Heneghan, C [1 ]
de Chazal, P [1 ]
机构
[1] Univ Coll Dublin, Dept Elect & Elect Engn, Dublin 4, Ireland
关键词
image registration; vector mapping; affine transformation; EM algorithm; retina;
D O I
10.1016/j.imavis.2004.04.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for registering pairs of digital images of the retina is presented, using a small set of intrinsic control points whose matching is not known. Control point matching is then achieved by calculating similarity transformation (ST) coefficients for all possible combinations of control point pairs. The cluster of coefficients associated with the matched control point pairs is identified by calculating the Euclidean distance between each set of ST coefficients and its Rth nearest neighbour, followed by use of the Expectation-Maximization (EM) algorithm. Registration is then achieved using linear regression to optimize similarity, bilinear or second order polynomial transformations for the matching control point pairs. Results are presented of (a) the cross-modal image registration of an optical image and a fluorescein angiogram, (b) temporal registration of two images of an infant eye, and (c) mono-modal registration of a set of seven standard field optical photographs. For cross-modal registration, using a set of independent matched control points, points are mapped with an estimated accuracy of 2.9 pixels for 575 x 480 pixel images. Bilinear and second-order polynomial transformation models all prove to be appropriate for the final registration transform. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:883 / 898
页数:16
相关论文
共 50 条
  • [41] Simultaneous covariance driven correspondence (CDC) and transformation estimation in the expectation maximization framework
    Sofka, Michal
    Yang, Gehua
    Stewart, Charles V.
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1499 - +
  • [42] Deformable registration of digital images
    Guan Weiguang
    Xie Lin
    Ma Songde
    Journal of Computer Science and Technology, 1998, 13 (3) : 246 - 260
  • [43] Techniques for temporal registration of retinal images
    Fang, B
    Hsu, W
    Lee, ML
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1089 - 1092
  • [44] Deformable Registration of Digital Images
    管伟光
    解林
    马颂德
    Journal of Computer Science and Technology, 1998, (03) : 246 - 260
  • [45] LOCALIZATION OF TAMPERING IN CONTRAST AND BRIGHTNESS ADJUSTED IMAGES USING DISTRIBUTED SOURCE CODING AND EXPECTATION MAXIMIZATION
    Lin, Yao-Chung
    Varodayan, David
    Fink, Torsten
    Bellers, Erwin
    Girod, Bernd
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2204 - 2207
  • [46] Enhancing retinal images by nonlinear registration
    Molodij, G.
    Ribak, E. N.
    Glanc, M.
    Chenegros, G.
    OPTICS COMMUNICATIONS, 2015, 342 : 157 - 166
  • [47] Automatic registration of spectrophotometric retinal images
    Halldorsson, GH
    Benediktson, JA
    Zoega, GM
    Eysteinsson, T
    Stefansson, E
    NORSIG 2004: PROCEEDINGS OF THE 6TH NORDIC SIGNAL PROCESSING SYMPOSIUM, 2004, 46 : 5 - 8
  • [48] Deformable registration of digital images
    Guan, Weiguang
    Xie, Lin
    Ma, Songde
    Journal of Computer Science and Technology, 1998, 13 (03): : 246 - 260
  • [49] Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information
    Lipinski, B
    Herzog, H
    Kops, ER
    Oberschelp, W
    MullerGartner, HW
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (02) : 129 - 136
  • [50] An expectation maximization approach to impulsive noise removal in digital radiography
    I. Frosio
    S. Abati
    N. A. Borghese
    International Journal of Computer Assisted Radiology and Surgery, 2008, 3 : 91 - 96