This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solutions. Absorbing and reflecting boundary conditions are considered, and illustrated through several examples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting boundary value problem is not positivity preserving. (C) 2018 Published by Elsevier B.V.
机构:
Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USAJohns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
Oishi, Kenichi
Faria, Andreia V.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USAJohns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
Faria, Andreia V.
Yoshida, Shoko
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USAJohns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
Yoshida, Shoko
Chang, Linda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hawaii Manoa, John A Burns Sch Med, Neurosci & Magnet Resonance Res Program, Honolulu, HI 96822 USAJohns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
Chang, Linda
Mori, Susumu
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USAJohns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA