Ru oxide/carbon nanotube composites for supercapacitors prepared by spontaneous reduction of Ru(VI) and Ru(VII)

被引:55
|
作者
Liu, Xiaorong [1 ]
Huber, Trisha A. [2 ]
Kopac, Michael C. [2 ]
Pickup, Peter G. [1 ]
机构
[1] Mem Univ Newfoundland, Dept Chem, St John, NF A1B 3X7, Canada
[2] CFB Esquimalt, Dockyard Lab Pacific, Def Res & Dev Canada Atlantic, Victoria, BC V9A 7N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Carbon nanotubes; Ruthenium oxide; Supercapacitor; Impedance; Specific capacitance; HYDROUS RUTHENIUM OXIDE; CARBON NANOTUBES; ELECTRODE MATERIAL; MANGANESE OXIDE; HIGH-POWER; PERFORMANCE; NANOPARTICLES; BEHAVIOR; ENERGY;
D O I
10.1016/j.electacta.2009.07.044
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel method based on spontaneous reduction of Ru(VI) and Ru(VII) is reported for the deposition of Ru oxide on multi-walled carbon nanotubes (MWCNT). Both purified and acid functionalized nanotubes (p-MWCNT and a-MWCNT) have been used to produce composite materials for use in high power aqueous supercapacitors. Specific capacitances of 213 +/- 16 Fg(-1) and 184 +/- 11 Fg(-1) were obtained for Ru oxide/p-MWCNT and Ru oxide/a-MWCNT composites, respectively. Specific capacitances for the Ru oxide component were 704 +/- 62 Fg(-1) and 803 +/- 72Fg(-1), respectively. Current vs. potential curves exhibited capacitance peaks at ca. +0.5V vs. Ag/AgCl. The Ru oxide/p-MWCNT composite was shown to be stable over 20,000 charge/discharge cycles. An advantage of the method is that no pre-treatment of the MWCNT is required for optimum performance. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7141 / 7147
页数:7
相关论文
共 50 条
  • [21] Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes
    Schmidt, TJ
    Paulus, UA
    Gasteiger, HA
    Alonso-Vante, N
    Behm, RJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) : 2620 - 2624
  • [22] Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles for oxygen reduction reaction in alkaline media
    Hosseini, M. G.
    Zardari, P.
    APPLIED SURFACE SCIENCE, 2015, 345 : 223 - 231
  • [23] Reduction of oxide layer on Ru surface by atomic-hydrogen treatment
    Nishiyama, I
    Oizumi, H
    Motai, K
    Izumi, A
    Ueno, T
    Akiyama, H
    Namiki, A
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (06): : 3129 - 3131
  • [24] Dynamics and Reactions of Molecular Ru Catalysts at Carbon Nanotube-Water Interfaces
    Zhan, Shaoqi
    Ahlquist, Marten S. G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (24) : 7498 - 7503
  • [25] Confinement of Ru nanoparticles inside the carbon nanotube: Selectivity controls on methanol decomposition
    Se-Won Park
    Ji Hoon Park
    Chang Won Yoon
    Jin Hee Lee
    Korean Journal of Chemical Engineering, 2020, 37 : 1365 - 1370
  • [26] Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU)
    Karachevtsev, Victor A.
    Gladchenko, Galyna O.
    Karachevtsev, Maksym V.
    Valeev, Vladimir A.
    Leontiev, Victor S.
    Lytvyn, Oksana S.
    CHEMPHYSCHEM, 2008, 9 (14) : 2010 - 2018
  • [27] Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts
    Chien, Chun-Ching
    Jeng, King-Tsai
    MATERIALS CHEMISTRY AND PHYSICS, 2006, 99 (01) : 80 - 87
  • [28] Confinement of Ru nanoparticles inside the carbon nanotube: Selectivity controls on methanol decomposition
    Park, Se-Won
    Park, Ji Hoon
    Yoon, Chang Won
    Lee, Jin Hee
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (08) : 1365 - 1370
  • [29] Fischer-Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method
    Shariati, Jafar
    Haghtalab, Ali
    Mosayebi, Amir
    JOURNAL OF ENERGY CHEMISTRY, 2019, 28 : 9 - 22
  • [30] Synthesis and Characterization of Ru Enriched Pt-Ru Nanostructured Catalyst Prepared by Carbonyl-metal Complex Reduction for DMFC Redox Reactions
    Gamboa, S. A.
    Garcia, M. A.
    Ginez, F.
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2010, 13 (01) : 41 - 46