Non-parametric estimation for time-dependent AUC

被引:27
|
作者
Chiang, Chin-Tsang [1 ]
Hung, Hung [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
关键词
AUC; Bivariate estimation; Bootstrap; Gaussian process; Kaplan-Meier estimator; Non-parametric estimator; ROC; Smoothing parameter; Survival data; BIVARIATE DISTRIBUTION; REGRESSION;
D O I
10.1016/j.jspi.2009.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The area under the receiver operating characteristic (ROC) curve (AUC) is one of the commonly used measure to evaluate or compare the predictive ability of markers to the disease status. Motivated by an angiographic coronary artery disease (CAD) study, our objective is mainly to evaluate and compare the performance of several baseline plasma levels in the prediction of CAD-related vital status over time. Based on censored survival data, the non-parametric estimators are proposed for the time-dependent AUC. The limiting Gaussian processes of the estimators and the estimated asymptotic variance-covariance functions enable us to further construct confidence bands and develop testing procedures. Applications and finite sample properties of the proposed estimation methods and inference procedures are demonstrated through the CAD-related death data from the British Columbia Vital Statistics Agency and Monte Carlo simulations. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1162 / 1174
页数:13
相关论文
共 50 条
  • [41] Non-parametric estimation of reciprocal coordinate subtangent for right censored dependent scheme
    Sreejith, T. B.
    Sunoj, S. M.
    Rajesh, G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (13) : 3177 - 3190
  • [42] Non-parametric time series classification
    Lenser, S
    Veloso, M
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3918 - 3923
  • [43] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [44] Non-parametric estimation under progressive censoring
    Bordes, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 119 (01) : 171 - 189
  • [45] Non-parametric estimation in contaminated linear model
    Chai G.
    Sun Y.
    Yang X.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 195 - 202
  • [46] A fast non-parametric density estimation algorithm
    Egecioglu, O
    Srinivasan, A
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (10): : 755 - 763
  • [47] Non-parametric estimation of camera response function
    Chatzis, Ioannis S.
    Dermatas, Evangelos S.
    CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 385 - 388
  • [48] Non-parametric estimation of distance between groups
    Krzanowski, WJ
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (07) : 743 - 750
  • [49] Non-parametric estimation of mixture model order
    Corona, Enrique
    Nutter, Brian
    Mitra, Sunanda
    2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS & INTERPRETATION, 2008, : 145 - 148
  • [50] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483