An approach to measure the densities of solids using an artificial neural network

被引:1
|
作者
Neelamegam, P.
Rajendran, A. [1 ]
机构
[1] Nehru Mem Coll Autonomous, PG & Res Dept Appl Phys, Tiruchirappalli, Tamil Nadu, India
[2] Deemed Univ, SASTRA, Dept Elect & Instrumentat Engn, Thanjavur, Tamil Nadu, India
关键词
density measurement; temperature measurement; microcontroller; neural network; back propagation algorithm;
D O I
10.1080/10739140601126452
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A dedicated microcontroller based density measurement system is developed to measure densities of solids. A data acquisition system is designed and fabricated using a PIC16F877 microcontroller. To measure the weight and temperature of the sample, strain gauge and thermocouple sensors are used. A three layer neural network is used to train the data for atomic number, temperature, and density of sample using a back propagation algorithm. After training the neural network, it is used to compute the density at various temperatures.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [31] An artificial neural network approach for predicting hypertension using NHANES data
    Lopez-Martinez, Fernando
    Rolando Nunez-Valdez, Edward
    Gonzalez Crespo, Ruben
    Garcia-Diaz, Vicente
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [32] Prognostics of aluminum electrolytic capacitors using artificial neural network approach
    Khera, Neeraj
    Khan, Shakeb A.
    MICROELECTRONICS RELIABILITY, 2018, 81 : 328 - 336
  • [33] An approach to the calculation of multilayer magnetic shielding using artificial neural network
    Koroglu, S.
    Umurkan, N.
    Kilic, O.
    Attar, F.
    SIMULATION MODELLING PRACTICE AND THEORY, 2009, 17 (07) : 1267 - 1275
  • [34] An artificial neural network approach for predicting hypertension using NHANES data
    Fernando López-Martínez
    Edward Rolando Núñez-Valdez
    Rubén González Crespo
    Vicente García-Díaz
    Scientific Reports, 10
  • [35] Magnetic inverse modelling of a dike using the artificial neural network approach
    Alimoradi, Andisheh
    Angorani, Saeed
    Ebrahimzadeh, Mehrnoosh
    Panahi, Masoud Shariat
    NEAR SURFACE GEOPHYSICS, 2011, 9 (04) : 339 - 347
  • [36] An Evaluation on Offline Signature Verification using Artificial Neural Network Approach
    o-Khalifa, Othman
    Alam, Md. Khorshed
    Abdalla, Aisha Hassan
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 368 - 371
  • [37] NEW APPROACH FOR ESTIMATION OF POLLUTANT LOAD BY USING ARTIFICIAL NEURAL NETWORK
    Liu, Minghuan
    Yoshimi, Kenji
    Ishikawa, Tadaharu
    Kudo, Kentaro
    ADVANCES IN WATER RESOURCES AND HYDRAULIC ENGINEERING, VOLS 1-6, 2009, : 683 - +
  • [38] Multipoint milling tool supervision using artificial neural network approach
    Dhobale, Nilesh
    Mulik, Sharad
    Jegdeeshwaran, R.
    Ganer, Kaustubh
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 1898 - 1903
  • [39] Leak diagnosis in pipelines using a combined artificial neural network approach
    Perez-Perez, E. J.
    Lopez-Estrada, F. R.
    Valencia-Palomo, G.
    Torres, L.
    Puig, V
    Mina-Antonio, J. D.
    CONTROL ENGINEERING PRACTICE, 2021, 107
  • [40] PREDICTION OF URBAN TRAFFIC NOISE USING ARTIFICIAL NEURAL NETWORK APPROACH
    Kumar, Kranti
    Parida, Manoranjan
    Katiyar, Vinod Kumar
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2014, 13 (04): : 817 - 826