Compressive behaviour of additively manufactured AlSi10Mg

被引:24
|
作者
Hitzler, L. [1 ,2 ]
Schoch, N. [3 ]
Heine, B. [3 ]
Merkel, M. [3 ]
Hall, W. [1 ]
Oechsner, A. [1 ,4 ]
机构
[1] Griffith Univ, Griffith Sch Engn & Built Environm, Parklands Dr, Southport, Qld 4222, Australia
[2] Tech Univ Munich, Inst Mat Sci & Mech Mat, Boltzmannstr 15, D-85748 Garching, Germany
[3] Aalen Univ Appl Sci, Fac Mech Engn & Mat Sci, Beethovenstr 1, D-73430 Aalen, Germany
[4] Esslingen Univ Appl Sci, Fac Mech Engn, Kanalstr 33, D-73728 Esslingen, Germany
关键词
Anisotropy; Young's modulus; selective laser melting; powder-bed; LASER MELTED ALSI10MG; MECHANICAL-PROPERTIES; MICROSTRUCTURE; ALLOY;
D O I
10.1002/mawe.201700239
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advantages of free form fabrication methods regarding the geometrical flexibility are well known. With the full melting approach of the raw material, as utilized in selective laser melting, this freedom in design is coupled with remarkable mechanical strength. Most studies focused on the tensile characteristics; this study investigates the direction dependent compressive behaviour of selective laser melted AlSi10Mg. The obtained compressive Young's moduli exceeded both the equivalent Young's moduli for the tensile loading and the Young's modulus of the isotropic, conventionally fabricated, bulk base material, ranging as high as 82GPa. The compressive yield strength was found to be similar to the yield point in tensile loading, with the ultimate compressive stress and strain being far superior to their tensile counterpart.
引用
收藏
页码:683 / 688
页数:6
相关论文
共 50 条
  • [31] Effects of process parameters on strengthening mechanisms of additively manufactured AlSi10Mg
    Gokdag, Istemihan
    Acar, Erdem
    MATERIALS TESTING, 2023, 65 (03) : 409 - 422
  • [32] Effects of post-processing on the microstructural evolution and mechanical behaviour of an additively manufactured AlSi10Mg alloy
    Ramesh, R.
    Gairola, Saurabh
    Jayaganthan, R.
    Kamaraj, M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2802 - 2813
  • [33] How defects depend on geometry and scanning strategy in additively manufactured AlSi10Mg
    Englert, Lukas
    Czink, Steffen
    Dietrich, Stefan
    Schulze, Volker
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 299
  • [34] An equivalent stress approach for predicting fatigue behavior of additively manufactured AlSi10Mg
    Strauss, Lea
    Duarte, Larissa
    Kruse, Julius
    Madia, Mauro
    Loewisch, Guenther
    PROGRESS IN ADDITIVE MANUFACTURING, 2025,
  • [35] Study on Microstructure and Tribological Behavior of Additively Manufactured Graphene/AlSi10Mg Composite
    Patidar, Sunil
    Tiwari, Jitendar Kumar
    Das, Abhradeep
    Sathish, N.
    Mishra, Srinibash
    Ashiq, Mohammad
    Srivastava, Avanish Kumar
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (22) : 12503 - 12516
  • [36] Effect of Heat Treatment on Ductility and Precipitation Size of Additively Manufactured AlSi10Mg
    Megahed, Sandra
    Buehring, Jannik
    Duffe, Tobias
    Bach, Aleksandar
    Schroeder, Kai-Uwe
    Schleifenbaum, Johannes Henrich
    METALS, 2022, 12 (08)
  • [37] Aging temperature effects on microstructure and mechanical properties for additively manufactured AlSi10Mg
    Liang, Yaru
    Ma, Tiejun
    Jin, Tounan
    Zhang, Bo
    Yang, Le
    Yin, Wenhang
    Fu, Hanguang
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (10) : 1223 - 1236
  • [38] Precipitate formation in cerium-modified additively manufactured AlSi10Mg alloy
    Yakubov, Vladislav
    He, Peidong
    Kruzic, Jamie J.
    Li, Xiaopeng
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2023, 21 (04) : 1300 - 1310
  • [39] The influence of printing accuracy on the performance of additively manufactured AlSi10Mg phononic crystals
    Wang, Y. F.
    Guo, J. C.
    Zhang, Z.
    PHYSICA SCRIPTA, 2022, 97 (12)
  • [40] Role of hierarchical microstructure of additively manufactured AlSi10Mg on dynamic loading behavior
    Hadadzadeh, Amir
    Amirkhiz, Babak Shalchi
    Odeshi, Akindele
    Li, Jian
    Mohammadi, Mohsen
    ADDITIVE MANUFACTURING, 2019, 28 : 1 - 13