Complexity of controlling quantum many-body dynamics

被引:28
|
作者
Caneva, T. [1 ,2 ]
Silva, A. [3 ,4 ]
Fazio, R. [5 ,6 ]
Lloyd, S. [7 ]
Calarco, T. [1 ]
Montangero, S. [1 ]
机构
[1] Univ Ulm, Inst Quanteninformationsverarbeitung, D-89069 Ulm, Germany
[2] ICFO, Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] SISSA, Int Sch Adv Studies, I-34136 Trieste, Italy
[4] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[5] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[6] CNR, Ist Nanosci, I-56126 Pisa, Italy
[7] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 04期
基金
美国国家科学基金会;
关键词
PHYSICS;
D O I
10.1103/PhysRevA.89.042322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal controlcontrary to standard time-reversal procedures-is extremely robust to external sources of noise. We provide a lower bound on the control complexity of a many-body quantum dynamics in terms of the dimension of the manifold supporting it, elucidating the role played by integrability in this context.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A Central Limit Theorem in Many-Body Quantum Dynamics
    Ben Arous, Gerard
    Kirkpatrick, Kay
    Schlein, Benjamin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (02) : 371 - 417
  • [42] Dynamics of measured many-body quantum chaotic systems
    Altland, Alexander
    Buchhold, Michael
    Diehl, Sebastian
    Micklitz, Tobias
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [43] Speed limits and locality in many-body quantum dynamics
    Chen, Chi-Fang
    Lucas, Andrew
    Yin, Chao
    REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (11)
  • [44] A Large Deviation Principle in Many-Body Quantum Dynamics
    Kay Kirkpatrick
    Simone Rademacher
    Benjamin Schlein
    Annales Henri Poincaré, 2021, 22 : 2595 - 2618
  • [45] Quench dynamics of isolated many-body quantum systems
    Torres-Herrera, E. J.
    Santos, Lea F.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [46] Localization and Glassy Dynamics Of Many-Body Quantum Systems
    Giuseppe Carleo
    Federico Becca
    Marco Schiró
    Michele Fabrizio
    Scientific Reports, 2
  • [47] Optimal Control Technique for Many-Body Quantum Dynamics
    Doria, Patrick
    Calarco, Tommaso
    Montangero, Simone
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [48] Dynamics of quantum coherence in many-body localized systems
    Chen, Jin-Jun
    Xu, Kai
    Ren, Li-Hang
    Zhang, Yu-Ran
    Fan, Heng
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [49] Simulating quantum many-body dynamics on a current digital quantum computer
    Adam Smith
    M. S. Kim
    Frank Pollmann
    Johannes Knolle
    npj Quantum Information, 5
  • [50] Simulating quantum many-body dynamics on a current digital quantum computer
    Smith, Adam
    Kim, M. S.
    Pollmann, Frank
    Knolle, Johannes
    NPJ QUANTUM INFORMATION, 2019, 5 (1)