Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth

被引:15
|
作者
Stampoulis, Dimitrios [1 ,2 ]
Reager, John T. [1 ]
David, Cedric H. [1 ]
Andreadis, Konstantinos M. [1 ,3 ]
Famiglietti, James S. [1 ,4 ]
Farr, Tom G. [1 ]
Trangsrud, Amy R. [1 ]
Basilio, Ralph R. [1 ]
Sabo, John L. [2 ]
Osterman, Gregory B. [1 ]
Lundgren, Paul R. [1 ]
Liu, Zhen [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Arizona State Univ, Future H2O, Knowledge Enterprise Dev, Tempe, AZ 85281 USA
[3] Univ Massachusetts, Dept Civil & Environm Engn, Amherst, MA 01003 USA
[4] Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada
关键词
groundwater; water table depth trends; Variable Infiltration Capacity model; GRACE observations; data integration; water resources management; GROUNDWATER-DEPENDENT ECOSYSTEMS; LAND-SURFACE MODEL; DATA ASSIMILATION; SOIL-MOISTURE; SATELLITE; DEPLETION; DYNAMICS; DROUGHT; PATTERNS; FLUXES;
D O I
10.1016/j.advwatres.2019.04.004
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Despite numerous advances in continental-scale hydrologic modeling and improvements in global Land Surface Models, an accurate representation of regional water table depth (WTD) remains a challenge. Data assimilation of observations from the Gravity Recovery and Climate Experiment (GRACE) mission leads to improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of lumped water storage. However, the usually shallow groundwater compartment of many models presents a problem with GRACE assimilation techniques, as these satellite observations also represent changes in deeper soils and aquifers. To improve the accuracy of modeled groundwater estimates and allow the representation of WTD at finer spatial scales, we implemented a simple, yet novel approach to integrate GRACE data, by augmenting the Variable Infiltration Capacity (VIC) hydrologic model. First, the subsurface model structural representation was modified by incorporating an additional (fourth) soil layer of varying depth (up to 1000 m) in VIC as the bottom 'groundwater' layer. This addition allows the model to reproduce water storage variability not only in shallow soils but also in deeper groundwater, in order to allow integration of the full GRACE-observed variability. Second, a Direct Insertion scheme was developed that integrates the high temporal (daily) and spatial (similar to 6.94 km) resolution model outputs to match the GRACE resolution, performs the integration, and then disaggregates the updated model state after the assimilation step. Simulations were performed with and without Direct Insertion over the three largest river basins in California and including the Central Valley, in order to test the augmented model's ability to capture seasonal and inter-annual trends in the water table. This is the first-ever fusion of GRACE total water storage change observations with hydrologic simulations aiming at the determination of water table depth dynamics, at spatial scales potentially useful for local water management.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
  • [41] A Two-Step Linear Model to Fill the Data Gap Between GRACE and GRACE-FO Terrestrial Water Storage Anomalies
    Yang, Xinchun
    You, Wei
    Tian, Siyuan
    Jiang, Zhongshan
    Wan, Xiangyu
    WATER RESOURCES RESEARCH, 2023, 59 (11)
  • [42] Evaluation of alternative model-data fusion approaches for retrospective water balance estimation
    Van Dijk, A. I. J. M.
    Renzullo, L. J.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 3754 - 3760
  • [43] Satellite Observations of Regional Drought Severity in the Continental United States Using GRACE-Based Terrestrial Water Storage Changes
    Zhao, Meng
    Geruo, A.
    Velicogna, Isabella
    Kimball, John S.
    JOURNAL OF CLIMATE, 2017, 30 (16) : 6297 - 6308
  • [44] Global terrestrial water storage variations revealed by gravity mission and hydrologic and climate model
    Wei Haohan
    Yan Hongbo
    Shi Xiaoyun
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [45] A New Combined Terrestrial Water Storage Change Model Based on GRACE Satellite Gravimetry
    Li Z.
    Lu Y.
    Jiang W.
    Chen Q.
    Chen H.
    Ye S.
    Lai S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (07): : 1180 - 1191
  • [46] Terrestrial Water Storage Changes in the Tianshan Mountains of Xinjiang Measured by GRACE During 2003~2013
    Li W.
    Guo J.
    Chang X.
    Zhu G.
    Kong Q.
    Guo, Jinyun (jinyunguo1@126.com), 1600, Editorial Board of Medical Journal of Wuhan University (42): : 1021 - 1026
  • [47] Influences of reservoir operation on terrestrial water storage changes detected by GRACE in the Yellow River basin
    Xie, Jingkai
    Xu, Yue-Ping
    Booij, Martijn J.
    Guo, Yuxue
    JOURNAL OF HYDROLOGY, 2022, 610
  • [48] Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002-2010
    Feng Wei
    Lemoine, Jean-Michel
    Zhong Min
    Hsu Tou-Tse
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2012, 55 (03): : 814 - 821
  • [49] Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions
    Zhu, Yu
    Liu, Shiyin
    Yi, Ying
    Xie, Fuming
    Grunwald, Richard
    Miao, Wenfei
    Wu, Kunpeng
    Qi, Miaomiao
    Gao, Yongpeng
    Singh, Dharmaveer
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 799
  • [50] Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations
    Zhang, Liangjing
    Dobslaw, Henryk
    Stacke, Tobias
    Guentner, Andreas
    Dill, Robert
    Thomas, Maik
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (02) : 821 - 837