Time adaptivity in the diffusive wave approximation to the shallow water equations

被引:8
|
作者
Collier, Nathan [1 ]
Radwan, Hany [1 ]
Dalcin, Lisandro [2 ]
Calo, Victor M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[2] Ctr Int Metodos Computac Ingn, Santa Fe, Santa Fe, Argentina
关键词
Time adaptivity; Shallow water flow; Overland flow; GENERALIZED-ALPHA METHOD; RUNGE-KUTTA METHODS; ISOGEOMETRIC ANALYSIS;
D O I
10.1016/j.jocs.2011.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 50 条
  • [41] Time integration of the shallow water equations in spherical geometry
    Lanser, D
    Blom, JG
    Verwer, JG
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) : 373 - 393
  • [42] Modified time splitting scheme for shallow water equations
    Bourchtein, Andrei
    Bourchtein, Ludmila
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 73 (1-4) : 52 - 64
  • [43] WAITING TIME SOLUTIONS OF THE SHALLOW-WATER EQUATIONS
    GRUNDY, RE
    BELL, VA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 441 (1913): : 641 - 648
  • [44] Time splitting with improved accuracy for the shallow water equations
    Bourchtein, A.
    Bourchtein, L.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 339 - 346
  • [45] Properties of the Wave Curves in the Shallow Water Equations with Discontinuous Topography
    Mai Duc Thanh
    Dao Huy Cuong
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 305 - 337
  • [46] On wave–current interaction by the Green–Naghdi equations in shallow water
    W. Y. Duan
    K. Zheng
    B. B. Zhao
    Z. Demirbilek
    R. C. Ertekin
    W. C. Webster
    Natural Hazards, 2016, 84 : 567 - 583
  • [47] IMPLICIT WAVE EQUATION MODEL FOR THE SHALLOW WATER EQUATIONS.
    Kinnmark, Ingemar P.E.
    Gray, William G.
    1600, (07):
  • [48] Sparse element for shallow water wave equations on triangle meshes
    Mewis, Peter
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (08) : 864 - 882
  • [49] A hybrid WENO/CPR method for the shallow water wave equations
    Lin, S.
    Song, S.
    ENERGY SCIENCE AND APPLIED TECHNOLOGY (ESAT 2016), 2016, : 519 - 524
  • [50] Local time stepping for the shallow water equations in MPAS
    Capodaglio, Giacomo
    Petersen, Mark
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449