THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS

被引:19
|
作者
Kunt, Mehmet [1 ]
Karapinar, Dunya [1 ]
Turhan, Sercan [2 ]
Iscan, Imdat [2 ]
机构
[1] Karadeniz Tech Univ, Dept Math, Fac Sci, TR-61080 Trabzon, Turkey
[2] Giresun Univ, Dept Math, Fac Sci & Arts, TR-28200 Giresun, Turkey
关键词
convex functions; Hermite-Hadamard inequalities; left Riemann-Liouville fractional integral; trapezoid type inequalities; midpoint type inequalities; DIFFERENTIABLE MAPPINGS;
D O I
10.1515/ms-2017-0261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, with a new approach, a new fractional Hermite-Hadamard type inequalities for convex functions is obtained by using only the left Riemann-Liouville fractional integral. Also, to have new fractional trapezoid and midpoint type inequalities for the differentiable convex functions, two new equalities are proved. Our results generalize earlier studies. We expect that this study will be lead to the new fractional integration studies for Hermite-Hadamard type inequalities.
引用
收藏
页码:773 / 784
页数:12
相关论文
共 50 条
  • [21] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Yuruo Zhang
    JinRong Wang
    Journal of Inequalities and Applications, 2013 (1)
  • [22] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Zhang, Yuruo
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [23] NEW EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITIES INVOLVING RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Budak, H.
    Kara, H.
    Sarikaya, M. Z.
    Kiris, M. E.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 665 - 678
  • [24] NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS
    Qi, Yongfang
    Li, Guoping
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [25] THE RIGHT RIEAMAN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 45 - 57
  • [26] New Riemann–Liouville fractional Hermite–Hadamard type inequalities for harmonically convex functions
    Zeynep Şanlı
    Mehmet Kunt
    Tuncay Köroğlu
    Arabian Journal of Mathematics, 2020, 9 : 431 - 441
  • [27] Hermite-Hadamard Inequalities Involving Riemann-Liouville Fractional Integrals via s-convex Functions and Applications to Special Means
    Wang, JinRong
    Li, Xuezhu
    Zhou, Yong
    FILOMAT, 2016, 30 (05) : 1143 - 1150
  • [28] The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green's function
    Iqbal, Arshad
    Adil Khan, Muhammad
    Suleman, Muhammad
    Chu, Yu-Ming
    AIP ADVANCES, 2020, 10 (04)
  • [29] Hermite-Hadamard-type inequalities involving ψ-Riemann-Liouville fractional integrals via s-convex functions
    Zhao, Yong
    Sang, Haiwei
    Xiong, Weicheng
    Cui, Zhongwei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [30] Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals
    Wang, J.
    Deng, J.
    Feckan, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (02) : 193 - 211