a""-Divisibility of a""-regular partition functions

被引:39
|
作者
Dandurand, Brian [2 ]
Penniston, David [1 ]
机构
[1] Furman Univ, Dept Math, Greenville, SC 29613 USA
[2] Clemson Univ, Dept Math, Clemson, SC 29634 USA
来源
RAMANUJAN JOURNAL | 2009年 / 19卷 / 01期
关键词
Partitions; Hecke eigenforms;
D O I
10.1007/s11139-007-9042-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give exact criteria for the a""-divisibility of the a""-regular partition function b (a"") (n) for a""a{5,7,11}. These criteria are found using the theory of complex multiplication. In each case the first criterion given corresponds to the Ramanujan congruence modulo a"" for the unrestricted partition function, and the second is a condition given by J.-P. Serre for the vanishing of the coefficients of R (m=1) (az) (1-q (m) ) (a""-1).
引用
收藏
页码:63 / 70
页数:8
相关论文
共 50 条
  • [31] Partition functions on k-regular graphs with {0,1}-vertex assignments and real edge functions
    Cai, Jin-Yi
    Kowalczyk, Michael
    THEORETICAL COMPUTER SCIENCE, 2013, 494 : 63 - 74
  • [32] Divisibility of zeta functions of curves in a covering
    Aubry, Y
    Perret, M
    ARCHIV DER MATHEMATIK, 2004, 82 (03) : 205 - 213
  • [33] Divisibility of matrices associated with multiplicative functions
    Li, Mao
    Tan, Qianrong
    DISCRETE MATHEMATICS, 2011, 311 (20) : 2276 - 2282
  • [34] ON DIVISIBILITY IN RINGS OF CONTINUOUS-FUNCTIONS
    POVYSHEV, AG
    RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (03) : 194 - 195
  • [35] On the divisibility properties and nonlinearity of resilient functions
    Carlet, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11): : 917 - 922
  • [36] DIVISIBILITY OF THE PARTITION FUNCTION PDOt(n) BY POWERS OF 2 AND 3
    Barman, Rupam
    Singh, Gurinder
    Singh, Ajit
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 14 - 25
  • [37] Unimodality of regular partition polynomials
    Zhan, Xin-Chun
    Zhu, Bao-Xuan
    RAMANUJAN JOURNAL, 2024, 65 (02): : 939 - 957
  • [38] INFINITE PARTITION REGULAR MATRICES
    DEUBER, WA
    HINDMAN, N
    LEADER, I
    LEFMANN, H
    COMBINATORICA, 1995, 15 (03) : 333 - 355
  • [39] Independence for partition regular equations
    Leader, Imre
    Russell, Paul A.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (05) : 825 - 839
  • [40] Consistency for partition regular equations
    Leader, I
    Russell, PA
    DISCRETE MATHEMATICS, 2006, 306 (8-9) : 847 - 850