Anisole as an ambidentate ligand: Ab initio molecular orbital study of alkali metal cations binding to anisole

被引:55
|
作者
Nicholas, JB [1 ]
Hay, BP [1 ]
机构
[1] Pacific NW Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 1999年 / 103卷 / 48期
关键词
D O I
10.1021/jp990570p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present optimized geometries and binding energies for alkali metal cation complexes with anisole (methoxybenzene). Results are obtained for Li+ through Cs+ at the RHF/6-311G* and MP2/6-311+G* levels of theory, with K+, Rb+, and Cs+ represented by relativistic ECPs and associated valence basis sets. RHF/6-311G* frequencies are used to verify that the optimized geometries are minima and to calculate binding enthalpies. The effects of basis set superposition error (BSSE) are estimated at both the RHF and MP2 levels. We find that the alkali metals bind to anisole in two ways, either predominantly through interactions with the aromatic ring or with the ether oxygen. For binding to the ring, we obtain BSSE-corrected MP2/6-311+G* binding enthalpies (in kcal/mol) of -38.1 (Li+), -23.6 (Na+), -18.3 (K+), -15.4 (Rb+), and -13.6 (Cs+). The average distances (in Angstrom) between the ring carbons and the cations are 2.33 (Li+), 2.79 (Na+), 3.20 (K+), 3.44 (Rb+), and 3.70 (Cs+). For binding to the ether oxygen, the BSSE-corrected MP2/6-311G* binding enthalpies (in kcal/mol) are -37.6 (Li+), -25.2 (Na+), -19.4 (K+), -16.4 (Rb+), and -14.3 (Cs+). The distances (in Angstrom) between the ether oxygen and the cations are 1.82 (Li+), 2.24 (Na+), 2.62 (K+), 2.87 (Rb+), and 3.10 (Cs+). Although the differences in binding energy between the two sites are small, the cations generally prefer to bind to the oxygen.
引用
收藏
页码:9815 / 9820
页数:6
相关论文
共 50 条
  • [21] An ab initio investigation of the molecular orbital and stabilization energy for substituted lithium carbene cations
    Li, JH
    Feng, SY
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1998, 19 (07): : 1126 - 1130
  • [22] Ab initio molecular orbital study on molecular and hydration structures of ectoine
    Suenobu, K
    Nagaoka, M
    Yamabe, T
    Nagata, S
    JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (38): : 7505 - 7511
  • [23] Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors
    Chaban, Vitaly V.
    Prezhdo, Oleg V.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (25): : 4302 - 4306
  • [24] The use of ab initio and DFT calculations in the interpretation of ultraviolet photoelectron spectra: the rotational isomerism of anisole and thioanisole as a case study
    Bossa, M
    Morpurgo, S
    Stranges, S
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2002, 618 (1-2): : 155 - 164
  • [25] Ab initio molecular orbital study of the structures of purine hydrates
    Colson, AO
    Sevilla, MD
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (11): : 4420 - 4423
  • [26] Ab initio molecular orbital study of valence isomers of pyridine
    Yavari, I
    Moradi, S
    Fard, HK
    Nourmohammadian, F
    Tahmassebi, D
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2002, 578 : 249 - 253
  • [27] Ab initio molecular orbital study of dinitrobenzene radical anions
    Kayanuma, Megumi
    Hosoi, Haruko
    Furuya, Akiko
    Masuda, Yuichi
    Takano, Keiko
    CHEMICAL PHYSICS LETTERS, 2010, 494 (4-6) : 139 - 143
  • [28] An ab initio molecular orbital study of structural isomers of diketopyrrolopyrrole
    Nourmohammadian, F
    Yavari, I
    Mirhabibi, AR
    Moradi, S
    DYES AND PIGMENTS, 2005, 67 (01) : 15 - 20
  • [29] Ab initio molecular orbital study of the mechanism of photodissociation of formamide
    Liu, D
    Fang, WH
    Fu, XY
    CHEMICAL PHYSICS LETTERS, 2000, 318 (4-5) : 291 - 297
  • [30] AB-INITIO MOLECULAR-ORBITAL STUDY OF IMINOBORANE
    BAIRD, NC
    DATTA, RK
    INORGANIC CHEMISTRY, 1972, 11 (01) : 17 - &