Video Covariance Matrix Logarithm for Human Action Recognition in Videos

被引:0
|
作者
Bilinski, Piotr [1 ]
Bremond, Francois [1 ]
机构
[1] INRIA Sophia Antipolis, STARS Team, 2004 Route Lucioles,BP93, F-06902 Sophia Antipolis, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new local spatio-temporal descriptor for videos and we propose a new approach for action recognition in videos based on the introduced descriptor. The new descriptor is called the Video Covariance Matrix Logarithm (VCML). The VCML descriptor is based on a covariance matrix representation, and it models relationships between different low-level features, such as intensity and gradient. We apply the VCML descriptor to encode appearance information of local spatio-temporal video volumes, which are extracted by the Dense Trajectories. Then, we present an extensive evaluation of the proposed VCML descriptor with the Fisher vector encoding and the Support Vector Machines on four challenging action recognition datasets. We show that the VCML descriptor achieves better results than the state-of-the-art appearance descriptors. Moreover, we present that the VCML descriptor carries complementary information to the HOG descriptor and their fusion gives a significant improvement in action recognition accuracy. Finally, we show that the VCML descriptor improves action recognition accuracy in comparison to the state-of-the-art Dense Trajectories, and that the proposed approach achieves superior performance to the state-of-the-art methods.
引用
收藏
页码:2140 / 2147
页数:8
相关论文
共 50 条
  • [21] Video Analytics Framework for Human Action Recognition
    Khan, Muhammad Attique
    Alhaisoni, Majed
    Armghan, Ammar
    Alenezi, Fayadh
    Tariq, Usman
    Nam, Yunyoung
    Akram, Tallha
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 3841 - 3859
  • [22] Video and Image Complexity in Human Action Recognition
    Burgos-Madrigal, Andrea
    Altamirano-Robles, Leopoldo
    PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, 2021, 13055 : 349 - 359
  • [23] Combining Video Subsequences for Human Action Recognition
    Onofri, Leonardo
    Soda, Paolo
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 597 - 600
  • [24] Stereoscopic Video Description for Human Action Recognition
    Mademlis, Ioannis
    Iosifidis, Alexandros
    Tefas, Anastasios
    Nikolaidis, Nikos
    Pitas, Ioannis
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA, SIGNAL AND VISION PROCESSING (CIMSIVP), 2014, : 1 - 6
  • [25] Human Action Recognition in Videos Using Hybrid Motion Features
    Liu, Si
    Liu, Jing
    Zhang, Tianzhu
    Lu, Hanqing
    ADVANCES IN MULTIMEDIA MODELING, PROCEEDINGS, 2010, 5916 : 411 - 421
  • [26] A temporal belief filter improving human action recognition in videos
    Ramasso, Emmanuel
    Rombaut, Michele
    Pellerin, Denis
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1389 - 1392
  • [27] Human action recognition in videos based on the Transferable Belief Model
    Ramasso, E.
    Panagiotakis, C.
    Pellerin, D.
    Rombaut, M.
    PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (01) : 1 - 19
  • [28] Human Action Recognition in Videos Based on Dense Trajectory Selection
    Cheng, Yang
    Yi, Yang
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 30 - 34
  • [29] Automatic Video Descriptor for Human Action Recognition
    Perera, Minoli
    Farook, Cassim
    Madurapperuma, A. P.
    2017 NATIONAL INFORMATION TECHNOLOGY CONFERENCE (NITC), 2017, : 61 - 66
  • [30] Multi-Temporal Convolutions for Human Action Recognition in Videos
    Stergiou, Alexandros
    Poppe, Ronald
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,