Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling

被引:0
|
作者
Hron, Jiri [1 ,2 ]
Novak, Roman [1 ]
Pennington, Jeffrey [1 ]
Sohl-Dickstein, Jascha [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Univ Cambridge, Cambridge, England
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162 | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce repriorisation, a data-dependent reparameterisation which transforms a Bayesian neural network (BNN) posterior to a distribution whose KL divergence to the BNN prior vanishes as layer widths grow. The repriorisation map acts directly on parameters, and its analytic simplicity complements the known neural network Gaussian process (NNGP) behaviour of wide BNNs in function space. Exploiting the repriorisation, we develop a Markov chain Monte Carlo (MCMC) posterior sampling algorithm which mixes faster the wider the BNN. This contrasts with the typically poor performance of MCMC in high dimensions. We observe up to 50x higher effective sample size relative to no reparametrisation for both fully-connected and residual networks. Improvements are achieved at all widths, with the margin between reparametrised and standard BNNs growing with layer width.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Learning Structured Weight Uncertainty in Bayesian Neural Networks
    Sun, Shengyang
    Chen, Changyou
    Carin, Lawrence
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 1283 - 1292
  • [12] Encoding the Latent Posterior of Bayesian Neural Networks for Uncertainty Quantification
    Franchi, Gianni
    Bursuc, Andrei
    Aldea, Emanuel
    Dubuisson, Severine
    Bloch, Isabelle
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2027 - 2040
  • [13] Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
    Vadera, Meet P.
    Jalain, Brian
    Marlin, Benjamin M.
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 719 - 728
  • [14] Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
    Kristiadi, Agustinus
    Eschenhagen, Runa
    Hennig, Philipp
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [15] Data augmentation in Bayesian neural networks and the cold posterior effect
    Nabarro, Seth
    Ganev, Stoil
    Garriga-Alonso, Adria
    Fortuin, Vincent
    Van der Wilk, Mark
    Aitchison, Laurence
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1434 - 1444
  • [16] Bayesian Neural Networks with Weight Sharing Using Dirichlet Processes
    Roth, Wolfgang
    Pernkopf, Franz
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 246 - 252
  • [17] A Sparse Bayesian Model for Random Weight Fuzzy Neural Networks
    Altilio, Rosa
    Rosato, Antonello
    Panella, Massimo
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [18] Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
    Wiese, Jonas Gregor
    Wimmer, Lisa
    Papamarkou, Theodore
    Bischl, Bernd
    Guennemann, Stephan
    Ruegamer, David
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 459 - 474
  • [19] A Resource-efficient Weight Sampling Method for Bayesian Neural Network Accelerators
    Hirayama, Yuki
    Asai, Tetsuya
    Motomura, Masato
    Takamaeda-Yamazaki, Shinya
    2019 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR 2019), 2019, : 137 - 142
  • [20] Analytic Theory for the Dynamics of Wide Quantum Neural Networks
    Liu, Junyu
    Najafi, Khadijeh
    Sharma, Kunal
    Tacchino, Francesco
    Jiang, Liang
    Mezzacapo, Antonio
    PHYSICAL REVIEW LETTERS, 2023, 130 (15)