Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration

被引:71
|
作者
Wu, Lifeng [1 ]
Fan, Junliang [2 ]
机构
[1] Nanchang Inst Technol, Sch Hydraul & Ecol Engn, Nanchang, Jiangxi, Peoples R China
[2] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling, Shaanxi, Peoples R China
来源
PLOS ONE | 2019年 / 14卷 / 05期
基金
中国国家自然科学基金;
关键词
SUPPORT-VECTOR-MACHINE; GLOBAL SOLAR-RADIATION; LIMITED CLIMATIC DATA; ARPS DECLINE MODEL; EMPIRICAL EQUATIONS; REGRESSION; NETWORK; ANFIS; TEMPERATURE; SVM;
D O I
10.1371/journal.pone.0217520
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately predicting reference evapotranspiration (ET0) with limited climatic data is crucial for irrigation scheduling design and agricultural water management. This study evaluated eight machine learning models in four categories, i.e. neuron-based (MLP, GRNN and ANFIS), kernel-based (SVM, KNEA), tree-based (M5Tree, XGBoost) and curve-based (MARS) models, for predicting daily ET0 with maximum/maximum temperature and precipitation data during 2001-2015 from 14 stations in various climatic regions of China, i.e., arid desert of northwest China (NWC), semi-arid steppe of Inner Mongolia (IM), Qinghai-Tibetan Plateau (QTP), (semi-)humid cold-temperate northeast China (NEC), semi-humid warm-temperate north China (NC), humid subtropical central China (CC) and humid tropical south China (SC). The results showed machine learning models using only temperature data obtained satisfactory daily ET0 estimates (on average R-2 = 0.829, RMSE = 0.718 mm day(-1), NRMSE = 0.250 and MAE = 0.508 mm day(-1)). The prediction accuracy was improved by 7.6% across China when information of precipitation was further considered, particularly in (sub) tropical humid regions (by 9.7% in CC and 12.4% in SC). The kernel-based SVM, KNEA and curve-based MARS models generally outperformed the others in terms of prediction accuracy, with the best performance by KNEA in NWC and IM, by SVM in QTP, CC and SC, and very similar performance by them in NEC and NC. SVM (1.9%), MLP (2.0%), MARS (2.6%) and KNEA (6.4%) showed relatively small average increases in RMSE during testing compared with training RMSE. SVM is highly recommended for predicting daily ET0 across China in light of best accuracy and stability, while KNEA and MARS are also promising powerful models.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Predicting employee attrition using tree-based models
    El-Rayes, Nesreen
    Fang, Ming
    Smith, Michael
    Taylor, Stephen M.
    INTERNATIONAL JOURNAL OF ORGANIZATIONAL ANALYSIS, 2020, 28 (06) : 1273 - 1291
  • [32] Kernel-based learning of hierarchical multilabel classification models
    Rousu, Juho
    Saunders, Craig
    Szedmak, Sandor
    Shawe-Taylor, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1601 - 1626
  • [33] Kernel-based learning of hierarchical multilabel classification models
    Department of Computer Science, PO Box 68, FI-00014 Helsinki, Finland
    不详
    J. Mach. Learn. Res., 2006, (1601-1626):
  • [34] Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation
    Sattari, Mohammad Taghi
    Apaydin, Halit
    Band, Shahab S.
    Mosavi, Amir
    Prasad, Ramendra
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (02) : 603 - 618
  • [35] Comparison of the Tree-Based Machine Learning Algorithms to Cox Regression in Predicting the Survival of Oral and Pharyngeal Cancers: Analyses Based on SEER Database
    Du, Mi
    Haag, Dandara G.
    Lynch, John W.
    Mittinty, Murthy N.
    CANCERS, 2020, 12 (10) : 1 - 16
  • [36] Predicting COVID-19 mortality risk in Toronto, Canada: a comparison of tree-based and regression-based machine learning methods
    Feng, Cindy
    Kephart, George
    Juarez-Colunga, Elizabeth
    BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [37] Predicting COVID-19 mortality risk in Toronto, Canada: a comparison of tree-based and regression-based machine learning methods
    Cindy Feng
    George Kephart
    Elizabeth Juarez-Colunga
    BMC Medical Research Methodology, 21
  • [38] Protein pKa Prediction by Tree-Based Machine Learning
    Chen, Ada Y.
    Lee, Juyong
    Damjanovic, Ana
    Brooks, Bernard R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (04) : 2673 - 2686
  • [39] Flood susceptibility prediction using tree-based machine learning models in the GBA
    Lyu, Hai -Min
    Yin, Zhen-Yu
    SUSTAINABLE CITIES AND SOCIETY, 2023, 97
  • [40] Tree-based interpretable machine learning of the thermodynamic phases
    Yang, Jintao
    Cao, Junpeng
    PHYSICS LETTERS A, 2021, 412