Non-uniform dependence on initial data for the two-component Novikov system

被引:16
|
作者
Wang, Haiquan
Fu, Ying [1 ]
机构
[1] Northwest Univ Xian, Sch Math, Xian 710069, Peoples R China
关键词
BLOW-UP PHENOMENA; SHALLOW-WATER EQUATION; WELL-POSEDNESS; GLOBAL EXISTENCE; WAVE-BREAKING; CAUCHY-PROBLEM;
D O I
10.1063/1.4976190
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considered herein is the initial value problem for the two-component Novikov system. It is shown that the solution map of this problem is not uniformly continuous in Sobolev spaces H-s(R) x Hs-1(R) for s > 5/2 on the line. Based on the well-posedness result and the lifespan for this problem, the method of approximate solutions is utilized. Published by AIP Publishing.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] On the Cauchy problem and peakons of a two-component Novikov system
    Qu, Changzheng
    Fu, Ying
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 1965 - 1996
  • [22] Estimates for δ-periodic eigenvalues of two-component Novikov system
    Wang, Xun
    Xie, Nana
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (04): : 899 - 910
  • [23] On the Cauchy problem for the two-component Novikov system with peakons
    Wang, Haiquan
    Chen, Miaomiao
    Jin, Yanpeng
    APPLICABLE ANALYSIS, 2023, 102 (12) : 3418 - 3443
  • [24] A note on the Cauchy problem for the two-component Novikov system
    Wang, Haiquan
    Chong, Gezi
    Wu, Lili
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1809 - 1843
  • [25] A note on the Cauchy problem for the two-component Novikov system
    Haiquan Wang
    Gezi Chong
    Lili Wu
    Journal of Evolution Equations, 2021, 21 : 1809 - 1843
  • [26] On the Cauchy problem and peakons of a two-component Novikov system
    Changzheng Qu
    Ying Fu
    Science China(Mathematics), 2020, 63 (10) : 1965 - 1996
  • [27] Analytic study of solutions for a two-component Novikov system
    Gao, Hui
    Wang, Gangwei
    MODERN PHYSICS LETTERS B, 2021, 35 (01):
  • [28] On the Cauchy problem and peakons of a two-component Novikov system
    Changzheng Qu
    Ying Fu
    Science China Mathematics, 2020, 63 : 1965 - 1996
  • [29] Non-uniform dependence on initial data for the Euler equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 774 - 789
  • [30] Non-uniform dependence on initial data for the Benjamin-Ono equation
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67