Feature selection for multi-label learning with missing labels

被引:32
|
作者
Wang, Chenxi [1 ,2 ]
Lin, Yaojin [1 ,2 ]
Liu, Jinghua [2 ,3 ]
机构
[1] Minnan Normal Univ, Sch Comp Sci, Zhangzhou 363000, Peoples R China
[2] Fujian Prov Univ, Key Lab Data Sci & Intelligence Applicat, Fuzhou, Fujian, Peoples R China
[3] Xiamen Univ, Dept Automat, Xiamen 361000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Neighborhood mutual information; Feature interaction; Missing labels; Multi-label learning; MUTUAL INFORMATION; RELEVANCE;
D O I
10.1007/s10489-019-01431-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-label learning, feature selection is a non-ignorable preprocessing step which can alleviate the negative effect of high-dimensionality. To address this problem, a number of effective information theory based feature selection algorithms for multi-label learning are proposed. However, these existing algorithms assume that the label space of multi-label training data is complete. In practice, the standpoint does not always hold true, due to the ambiguity among class labels or the cost effort to fully annotate instances. In this paper, we first define the new concepts of multi-label information entropy and multi-label mutual information. Then, feature redundancy, feature independence, and feature interaction are defined, respectively. In which, feature interaction is used to select more valuable features which may be ignored due to the incomplete label space. Moreover, a multi-label feature selection method with missing labels is proposed. Finally, extensive experiments conducted on eight publicly available data sets verify the effectiveness of the proposed algorithm via comparing it with state-of-the-art methods.
引用
收藏
页码:3027 / 3042
页数:16
相关论文
共 50 条
  • [21] Instance structure based multi-label learning with missing labels
    Chen, Tianzhu
    Li, Fenghua
    Guo, Yunchuan
    Li, Zifu
    Tongxin Xuebao/Journal on Communications, 2021, 42 (11): : 121 - 132
  • [22] Distinguishing two types of labels for multi-label feature selection
    Zhang, Ping
    Liu, Guixia
    Gao, Wanfu
    PATTERN RECOGNITION, 2019, 95 : 72 - 82
  • [23] Multi-Label classification with Missing Labels by Preserving Feature-Label Space Consistency
    Zhang, Zan
    Zhang, Depeng
    Wu, Gongqing
    2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 192 - 199
  • [24] Global and Adaptive Local Label Correlation for Multi-label Learning with Missing Labels
    Jiang, Qingxia
    Li, Peipei
    Zhang, Yuhong
    Hu, Xuegang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [25] Low rank label subspace transformation for multi-label learning with missing labels
    Kumar, Sanjay
    Rastogi, Reshma
    INFORMATION SCIENCES, 2022, 596 : 53 - 72
  • [26] Discriminatory Label-specific Weights for Multi-label Learning with Missing Labels
    Rastogi, Reshma
    Kumar, Sanjay
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1397 - 1431
  • [27] Learning Label-Specific Features for Multi-Label Classification with Missing Labels
    Huang, Jun
    Qin, Feng
    Zheng, Xiao
    Cheng, Zekai
    Yuan, Zhixiang
    Zhang, Weigang
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [28] Learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels
    Liu, Jinghua
    Wei, Wei
    Lin, Yaojin
    Yang, Lijie
    Zhang, Hongbo
    PATTERN RECOGNITION, 2024, 147
  • [29] Discriminatory Label-specific Weights for Multi-label Learning with Missing Labels
    Reshma Rastogi
    Sanjay Kumar
    Neural Processing Letters, 2023, 55 : 1397 - 1431
  • [30] Multi-Label Classification for images with Missing Labels
    Ma, Jianghong
    Fan, Jicong
    Wang, Wei
    2017 IEEE 15TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2017, : 1050 - 1055