A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties

被引:35
|
作者
Kundu, Indra [1 ]
Paul, Goutam [2 ]
Banerjee, Raja [3 ]
机构
[1] Maulana Abul Kalam Azad Univ Technol, Dept Bioinformat, Kolkata, India
[2] Indian Stat Inst, Kolkata, India
[3] Maulana Abul Kalam Azad Univ Technol, Kolkata, India
关键词
PDBBIND DATABASE; PRINCIPLES; DOCKING; RECOGNITION; MOTIONS;
D O I
10.1039/c8ra00003d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an exigency of transformation of the enormous amount of biological data available in various forms into some significant knowledge. We have tried to implement Machine Learning (ML) algorithm models on the protein-ligand binding affinity data already available to predict the binding affinity of the unknown. ML methods are appreciably faster and cheaper as compared to traditional experimental methods or computational scoring approaches. The prerequisites of this prediction are sufficient and unbiased features of training data and a prediction model which can fit the data well. In our study, we have applied Random forest and Gaussian process regression algorithms from the Weka package on protein-ligand binding affinity, which encompasses protein and ligand binding information from PdbBind database. The models are trained on the basis of selective fundamental information of both proteins and ligand, which can be effortlessly fetched from online databases or can be calculated with the availability of structure. The assessment of the models was made on the basis of correlation coefficient (R-2) and root mean square error (RMSE). The Random forest model gave R-2 and RMSE of 0.76 and 1.31 respectively. We have also used our features and prediction models on the dataset used by others and found that our model with our features outperformed the existing ones.
引用
收藏
页码:12127 / 12137
页数:11
相关论文
共 50 条
  • [21] A reinforcement learning approach for protein-ligand binding pose prediction
    Wang, Chenran
    Chen, Yang
    Zhang, Yuan
    Li, Keqiao
    Lin, Menghan
    Pan, Feng
    Wu, Wei
    Zhang, Jinfeng
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [22] Surface-based multimodal protein-ligand binding affinity prediction
    Xu, Shiyu
    Shen, Lian
    Zhang, Menglong
    Jiang, Changzhi
    Zhang, Xinyi
    Xu, Yanni
    Liu, Juan
    Liu, Xiangrong
    BIOINFORMATICS, 2024, 40 (07)
  • [23] Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
    Wang, Debby D.
    Chan, Moon-Tong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1088 - 1096
  • [24] DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction
    Li, Yanjun
    Rezaei, Mohammad A.
    Li, Chenglong
    Li, Xiaolin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 303 - 310
  • [25] Ensembling methods for protein-ligand binding affinity prediction
    Cader, Jiffriya Mohamed Abdul
    Newton, M. A. Hakim
    Rahman, Julia
    Cader, Akmal Jahan Mohamed Abdul
    Sattar, Abdul
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Debby D. Wang
    Wenhui Wu
    Ran Wang
    Journal of Cheminformatics, 16
  • [27] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [28] A point cloud-based deep learning strategy for protein-ligand binding affinity prediction
    Wang, Yeji
    Wu, Shuo
    Duan, Yanwen
    Huang, Yong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [29] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [30] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Wang, Debby D.
    Wu, Wenhui
    Wang, Ran
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)