A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties

被引:35
|
作者
Kundu, Indra [1 ]
Paul, Goutam [2 ]
Banerjee, Raja [3 ]
机构
[1] Maulana Abul Kalam Azad Univ Technol, Dept Bioinformat, Kolkata, India
[2] Indian Stat Inst, Kolkata, India
[3] Maulana Abul Kalam Azad Univ Technol, Kolkata, India
关键词
PDBBIND DATABASE; PRINCIPLES; DOCKING; RECOGNITION; MOTIONS;
D O I
10.1039/c8ra00003d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an exigency of transformation of the enormous amount of biological data available in various forms into some significant knowledge. We have tried to implement Machine Learning (ML) algorithm models on the protein-ligand binding affinity data already available to predict the binding affinity of the unknown. ML methods are appreciably faster and cheaper as compared to traditional experimental methods or computational scoring approaches. The prerequisites of this prediction are sufficient and unbiased features of training data and a prediction model which can fit the data well. In our study, we have applied Random forest and Gaussian process regression algorithms from the Weka package on protein-ligand binding affinity, which encompasses protein and ligand binding information from PdbBind database. The models are trained on the basis of selective fundamental information of both proteins and ligand, which can be effortlessly fetched from online databases or can be calculated with the availability of structure. The assessment of the models was made on the basis of correlation coefficient (R-2) and root mean square error (RMSE). The Random forest model gave R-2 and RMSE of 0.76 and 1.31 respectively. We have also used our features and prediction models on the dataset used by others and found that our model with our features outperformed the existing ones.
引用
收藏
页码:12127 / 12137
页数:11
相关论文
共 50 条
  • [1] A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    Ballester, Pedro J.
    Mitchell, John B. O.
    BIOINFORMATICS, 2010, 26 (09) : 1169 - 1175
  • [2] Protein-Ligand Binding Affinity Prediction Based on Deep Learning
    Lu, Yaoyao
    Liu, Junkai
    Jiang, Tengsheng
    Guan, Shixuan
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 310 - 316
  • [3] Prediction of protein-ligand binding affinity with deep learning
    Wang, Yuxiao
    Jiao, Qihong
    Wang, Jingxuan
    Cai, Xiaojun
    Zhao, Wei
    Cui, Xuefeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5796 - 5806
  • [4] Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction
    Liu, Xiang
    Feng, Huitao
    Wu, Jie
    Xia, Kelin
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (04)
  • [5] An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
    Parks, Conor
    Gaieb, Zied
    Amaro, Rommie E.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [6] Prediction of protein-ligand binding affinity from sequencing data with interpretable machine learning
    Rube, H. Tomas
    Rastogi, Chaitanya
    Feng, Siqian
    Kribelbauer, Judith F.
    Li, Allyson
    Becerra, Basheer
    Melo, Lucas A. N.
    Do, Bach Viet
    Li, Xiaoting
    Adam, Hammaad H.
    Shah, Neel H.
    Mann, Richard S.
    Bussemaker, Harmen J.
    NATURE BIOTECHNOLOGY, 2022, 40 (10) : 1520 - +
  • [7] Persistent Path-Spectral (PPS) Based Machine Learning for Protein-Ligand Binding Affinity Prediction
    Liu, Ran
    Liu, Xiang
    Wu, Jie
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (03) : 1066 - 1075
  • [8] Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction
    Meng, Zhenyu
    Xia, Kelin
    SCIENCE ADVANCES, 2021, 7 (19)
  • [9] Persistent Directed Flag Laplacian (PDFL)-Based Machine Learning for Protein-Ligand Binding Affinity Prediction
    Zia, Mushal
    Jones, Benjamin
    Feng, Hongsong
    Wei, Guo-Wei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025,
  • [10] Ollivier Persistent Ricci Curvature-Based Machine Learning for the Protein-Ligand Binding Affinity Prediction
    Wee, JunJie
    Xia, Kelin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (04) : 1617 - 1626