The generalized 3-connectivity of lexicographic product graphs

被引:0
|
作者
Li, Xueliang [1 ,2 ]
Mao, Yaping [1 ,2 ,3 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC TJKLC, Tianjin 300071, Peoples R China
[3] Qinghai Normal Univ, Dept Math, Xining 810008, Qianghai, Peoples R China
关键词
Connectivity; Steiner tree; Internally disjoint Steiner trees; Packing; Generalized connectivity; Lexicographic product; DISJOINT SPANNING-TREES; CONNECTIVITY;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The generalized k-connectivity kappa(k)(G) of a graph G, first introduced by Hager, is a natural generalization of the concept of (vertex-)connectivity. Denote by G circle H and G square H the lexicographic product and Cartesian product of two graphs G and H, respectively. In this paper, we prove that for any two connected graphs G and H, kappa(3)(G circle H) >= kappa(3)(G)vertical bar V(H)vertical bar. We also give upper bounds for kappa(3)(G square H) and kappa 3 (G circle H). Moreover, all the bounds are sharp.
引用
收藏
页码:339 / 353
页数:15
相关论文
共 50 条
  • [41] LEXICOGRAPHIC PRODUCT OF GRAPHS
    IMRICH, W
    ARCHIV DER MATHEMATIK, 1969, 20 (03) : 228 - &
  • [42] LEXICOGRAPHIC PRODUCT OF GRAPHS
    SABIDUSSI, G
    DUKE MATHEMATICAL JOURNAL, 1961, 28 (04) : 573 - &
  • [43] Generalized 3-connectivity and 3-edge-connectivity for the Cartesian products of some graph classes
    Sun, Yuefang
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 94 : 215 - 225
  • [44] Distance spectrum of the generalized lexicographic product of a graph with a family of regular graphs
    Tian, Fenglei
    Wang, Xinlei
    Wong, Dein
    ARS COMBINATORIA, 2018, 141 : 305 - 311
  • [45] The Adjacent Vertex Distinguishing Incidence Coloring of Generalized Lexicographic Product Graphs
    Wang, Qian
    Tian, Shuangliang
    2013 3RD INTERNATIONAL CONFERENCE ON SOCIAL SCIENCES AND SOCIETY (ICSSS 2013), PT 7, 2013, 38 : 202 - 205
  • [46] Domination in lexicographic product graphs
    Zhang, Xindong
    Liu, Juan
    Meng, Jixiang
    ARS COMBINATORIA, 2011, 101 : 251 - 256
  • [47] LEXICOGRAPHIC PRODUCT OF ALIGNED GRAPHS
    DORFLER, W
    IMRICH, W
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (01): : 21 - &
  • [48] Lexicographic Product of Extendable Graphs
    Bai, Bing
    Wu, Zefang
    Yang, Xu
    Yu, Qinglin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 197 - 204
  • [49] Protection of Lexicographic Product Graphs
    Klein, Douglas J.
    Rodriguez-Velazquez, Juan A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 139 - 158
  • [50] A lexicographic product for signed graphs
    Brunetti, Maurizio
    Cavaleri, Matteo
    Donno, Alfredo
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 332 - 343