Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media

被引:210
|
作者
Vikkisk, Merilin [1 ]
Kruusenberg, Ivar [1 ]
Joost, Urmas [2 ]
Shulga, Eugene [2 ]
Kink, Ilmar [2 ]
Tammeveski, Kaido [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
[2] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia
关键词
Graphene; Nitrogen doping; Oxygen reduction; Electrocatalysis; Alkaline membrane fuel cell; GLASSY-CARBON ELECTRODES; FUEL-CELL; RECENT PROGRESS; GRAPHITE OXIDE; ACID-MEDIA; CATALYSTS; NANOTUBES; UREA; ELECTROREDUCTION; NANOSTRUCTURES;
D O I
10.1016/j.apcatb.2013.09.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped graphene nanosheets were prepared from nitrogen precursor and graphene oxide (GO), which was synthesised from graphite by modified Hummers' method. Melamine, urea and dicyandiamide (DCDA) were used as nitrogen precursors and the doping was achieved by pyrolysing GO in the presence of these nitrogen-containing compounds at 800 degrees C. The N-doped graphene (NG) samples were characterised by scanning electron microscopy and X-ray photoelectron spectroscopy, the latter method revealed successful nitrogen doping. The oxygen reduction reaction (ORR) was examined on NG-modified glassy carbon (GC) electrodes in alkaline media using the rotating disk electrode (RDE) method. It was found on the basis of the ROE results that nitrogen-containing catalysts possess higher electrocatalytic activity towards the ORR than the annealed GO. Oxygen reduction on this GO material and on NG catalysts prepared by pyrolysis of GO-melamine and GO-urea followed a two-electron pathway at low overpotentials, but at higher cathodic potentials the desirable four-electron pathway occurred. For NG catalyst prepared from GO-DCDA a four-electron O-2 reduction pathway dominated in a wide range of potentials. The half-wave potential of O-2 reduction on this NG catalyst was close to that of Pt/C catalyst in 0.1 M KOH. These results are important for the development of alkaline membrane fuel cells based on non-platinum cathode catalysts. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 50 条
  • [11] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Felix Studt
    Catalysis Letters, 2013, 143 : 58 - 60
  • [12] The Oxygen Reduction Activity of Nitrogen-doped Graphene
    Liu Jian-feng
    Sun Ge
    Wang Ting
    Ning Kai
    Yuan Bin-xia
    Pan Wei-guo
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 24 (03) : 29 - 34
  • [13] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [14] Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media
    Li, Hui
    Liu, Hao
    Jong, Zoee
    Qu, Wei
    Geng, Dongsheng
    Sun, Xueliang
    Wang, Haijiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) : 2258 - 2265
  • [15] Enhanced electrocatalytic activity of nitrogen-doped olympicene/graphene hybrids for the oxygen reduction reaction
    Hou, Xiuli
    Zhang, Peng
    Li, Shuang
    Liu, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (33) : 22799 - 22804
  • [16] Synthesis of Nitrogen-doped Graphene and Its Electrocatalytic Performance Toward Oxygen Reduction Reaction
    Li Jing
    Wang Xian-Bao
    Yang Jia
    Yang Xu-Yu
    Wan Li
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2013, 34 (04): : 800 - 805
  • [17] Ruthenium Supported on Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Media
    Mabena, L. F.
    Modibedi, R. M.
    Ray, S. Sinha
    Coville, N. J.
    FUEL CELLS, 2012, 12 (05) : 862 - 868
  • [18] Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media
    Vikkisk, Merilin
    Kruusenberg, Ivar
    Ratso, Sander
    Joost, Urmas
    Shulga, Eugene
    Kink, Ilmar
    Rauwel, Protima
    Tammeveski, Kaido
    RSC ADVANCES, 2015, 5 (73) : 59495 - 59505
  • [19] High Active Hollow Nitrogen-Doped Carbon Microspheres for Oxygen Reduction in Alkaline Media
    Yu, Y. M.
    Zhang, J. H.
    Xiao, C. H.
    Zhong, J. D.
    Zhang, X. H.
    Chen, J. H.
    FUEL CELLS, 2012, 12 (03) : 506 - 510
  • [20] A novel in situ synthesis of nitrogen-doped graphene with excellent electrocatalytic performance for oxygen reduction reaction
    Ou, Changrui
    Chen, Hui
    Wang, Hou
    Liao, Yalin
    Li, Run
    Liu, Hongbo
    ELECTROCHIMICA ACTA, 2021, 380