On new generalizations of Hilbert's inequality and their applications

被引:40
|
作者
Kuang, JC [1 ]
Debnath, L
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Hilbert's inequality; Euler-Maclaurin summation formula; beta function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with new generalizations of Hilbert's inequality and their applications. It is shown that results of this paper are significant extensions and improvements of many known results. (C) 2000 Academic Press.
引用
收藏
页码:248 / 265
页数:18
相关论文
共 50 条
  • [31] Generalization of Hardy-Hilbert's Inequality and Applications
    Saglam, Aziz
    Yildirim, Huseyin
    Sarikaya, Mehmet Zeki
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 131 - 152
  • [32] On a New Reverse Hilbert's Type Inequality
    Xi, Gaowen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (02): : 87 - 95
  • [33] On new extensions of Hilbert's integral inequality
    Kuang, JC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (02) : 608 - 614
  • [34] A new reverse Hilbert's type inequality
    Xi, Gaowen
    Xi, Yue
    International Journal of Control and Automation, 2015, 8 (11): : 273 - 278
  • [35] Generalizations of Aczel's inequality and Popoviciu's inequality
    Wu, SH
    Debnath, L
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2005, 36 (02): : 49 - 62
  • [36] NEW GENERALIZATIONS OF AN INTEGRAL INEQUALITY
    Quoc-Anh Ngo
    Qi, Feng
    Ninh Van Thu
    REAL ANALYSIS EXCHANGE, 2007, 33 (02) : 471 - 474
  • [37] Generalizations of the Ostrowski's inequality
    Anastasiou, K. S.
    Kechriniotis, Aristides I.
    Kotsos, B. A.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2006, 9 (01) : 49 - 60
  • [38] Generalizations of Sherman’s inequality
    S. Ivelić Bradanović
    J. Pečarić
    Periodica Mathematica Hungarica, 2017, 74 : 197 - 219
  • [39] Generalizations of Furuta's inequality
    Dragomir, S. S.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 617 - 626
  • [40] Generalizations of Sherman's inequality
    Bradanovic, S. Ivelic
    Pearic, J.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (02) : 197 - 219