Limit Cycles Bifurcating from a Period Annulus in Continuous Piecewise Linear Differential Systems with Three Zones

被引:15
|
作者
Silva Lima, Mauricio Firmino [1 ]
Pessoa, Claudio [2 ]
Pereira, Weber F. [2 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Estadual Paulista, Dept Matemat, R Cristovao Colombo 2265, BR-15054000 Sao Jose De Rio Preto, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Piecewise linear vector fields; Poincare map; limit cycles; center; focus; OSCILLATIONS; SETS;
D O I
10.1142/S0218127417500225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of planar continuous piecewise linear vector fields with three zones. Using the Poincare map and some techniques for proving the existence of limit cycles for smooth differential systems, we prove that this class admits at least two limit cycles that appear by perturbations of a period annulus. Moreover, we describe the bifurcation of the limit cycles for this class through two examples of two-parameter families of piecewise linear vector fields with three zones.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On the Limit Cycles Bifurcating from Piecewise Quasi-Homogeneous Differential Center
    Li, Shimin
    Wu, Kuilin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [42] Limit Cycles in Planar Piecewise Linear Hamiltonian Systems with Three Zones Without Equilibrium Points
    Fonseca, Alexander Fernandes
    Llibre, Jaume
    Mello, Luis Fernando
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (11):
  • [43] The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order
    Francoise, Jean-Pierre
    He, Hongjin
    Xiao, Dongmei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 276 : 318 - 341
  • [44] ON THE LIMIT CYCLES OF A CLASS OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Menezes, Lucyjane de A. S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1835 - 1858
  • [45] Two Limit Cycles in Lienard Piecewise Linear Differential Systems
    Llibre, Jaume
    Ponce, Enrique
    Valls, Claudia
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1499 - 1522
  • [46] Limit cycles bifurcating from piecewise quadratic systems separated by a straight line
    Peng, Linping
    Gao, Yunfei
    Feng, Zhaosheng
    Nonlinear Analysis, Theory, Methods and Applications, 2020, 196
  • [47] Limit cycles of polynomial differential systems bifurcating from the periodic orbits of a linear differential system in Rd
    Llibre, Jaume
    Makhlouf, Amar
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (06): : 578 - 587
  • [48] Limit cycles bifurcating from piecewise quadratic systems separated by a straight line
    Peng, Linping
    Gao, Yunfei
    Feng, Zhaosheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [49] Limit cycles of continuous and discontinuous piecewise-linear differential systems in R3
    de Freitas, Bruno R.
    Llibre, Jaume
    Medrado, Joao C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 338 : 311 - 323
  • [50] Limit Cycles of Continuous Piecewise Differential Systems Formed by Linear and Quadratic Isochronous Centers I
    Ghermoul, Bilal
    Llibre, Jaume
    Salhi, Tayeb
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (01):