The homology of SL2 of discrete valuation rings

被引:2
|
作者
Hutchinson, Kevin [1 ]
Mirzaii, Behrooz [2 ]
Mokari, Fatemeh Y. [2 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp ICMC, Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Homology of linear groups; Localization exact sequence; Scissors congruence groups; K-groups; 3RD HOMOLOGY; K-THEORY;
D O I
10.1016/j.aim.2022.108313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a discrete valuation ring with field of fractions F and residue field k such that |k| =&NOTEQUexpressionL;2, 3, 4, 5, 7, 8, 9, 16, 27, 32, 64. We prove that there is a natural exact sequence & nbsp;H-3(SL2(A), Z[1/2]) -> H-3(SL2(F), Z[1/2]) ->& nbsp; RP1(k)[1/2] -> 0,& nbsp;& nbsp;where RP1(k) is the refined scissors congruence group of k. Let gamma(0)(m(A)) denote the congruence subgroup consisting of matrices in SL2(A) whose lower off-diagonal entry lies in the maximal ideal m(A). We also prove that there is an exact sequence & nbsp;0 & nbsp; -> (P) over bar (k)[1/2] -> H-2(gamma(0)(m(A)), Z[1/2]) ->& nbsp; H-2(SL2(A), Z[1/2]) -> I-2(k)[1/2]& nbsp;-> 0,& nbsp;& nbsp;where I-2(k) is the second power of the fundamental ideal of the Grothendieck-Witt ring GW(k) and (P) over bar(k) is a certain quotient of the scissors congruence group (in the sense of Dupont-Sah) P(k) of k. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:47
相关论文
共 50 条
  • [31] On the concept of level for subgroups of SL2 over arithmetic rings
    Grunewald, F
    Schwermer, J
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 114 (1) : 205 - 220
  • [32] Homology of SL2 over function fields I: Parabolic subcomplexes
    Wendt, Matthias
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 739 : 159 - 205
  • [33] CURVATURE AND DISCRETE-SERIES REPRESENTATION OF SL2(IR)
    MISRA, G
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1986, 9 (03) : 452 - 459
  • [34] DISCRETE VALUATION RINGS
    FAKHRUDDIN, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (03): : 69 - 70
  • [35] Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
    Bura, Andrei
    He, Qijun
    Reidys, Christian
    MATHEMATICS, 2021, 9 (07)
  • [36] Short (SL2 x SL2)-structures on Lie algebras
    Beites, Patricia D.
    Cordova-Martinez, Alejandra S.
    Cunha, Isabel
    Elduque, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (02)
  • [37] Rings of SL2(C)-characters and the Kauffman bracket skein module
    Bullock, D
    COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (04) : 521 - 542
  • [38] An embedding of the universal Askey-Wilson algebra into Uq(sl2) ⊗ Uq(sl2) ⊗ Uq(sl2)
    Huang, Hau-Wen
    NUCLEAR PHYSICS B, 2017, 922 : 401 - 434
  • [39] CONSTRUCTION OF DIVISION CHAINS IN ALGEBRAIC NUMBER RINGS, WITH APPLICATIONS TO SL2
    COOKE, G
    WEINBERGER, PJ
    COMMUNICATIONS IN ALGEBRA, 1975, 3 (06) : 481 - 524
  • [40] CONSTRUCTION OF DIVISION CHAINS IN ALGEBRAIC NUMBER RINGS, WITH APPLICATIONS TO SL2
    COOKE, GE
    WEINBERGER, PJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A60 - A60