Bifurcation Patterns in Homogeneous Area-Preserving Piecewise-Linear Maps

被引:6
|
作者
Benadero Garcia-Morato, Luis [1 ]
Freire Macias, Emilio [2 ]
Ponce Nunez, Enrique [2 ]
Torres Peral, Francisco [3 ]
机构
[1] Univ Politecn Cataluna, ETSETB, Dept Fis Aplicada, Jordi Girona1, Barcelona 08034, Spain
[2] Univ Seville, Escuela Tecn Super Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
[3] Univ Seville, Escuela Politecn Super, Dept Matemat Aplicada 2, Virgen Africa 7, Seville 41011, Spain
关键词
Piecewise linear maps; Bifurcations; Area preserving maps; BORDER-COLLISION BIFURCATIONS; SMOOTH; TONGUES;
D O I
10.1007/s12346-018-0299-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamical behavior of a family of planar continuous piecewise linear maps with two zones is analyzed. Assuming homogeneity and preservation of areas we obtain a canonical form with only two parameters: the traces of the two matrices defining the map. It is shown the existence of sausage-like structures made by lobes linked at the nodes of a nonuniform grid in the parameter plane. In each one of these structures, called resonance regions, the rotation number of the associated circle map is a given rational number. The boundary of the lobes and a significant inner partition line are studied with the help of some Fibonacci polynomials.
引用
收藏
页码:547 / 582
页数:36
相关论文
共 50 条
  • [31] A Dichotomy in Area-Preserving Reversible Maps
    Mário Bessa
    Alexandre A. P. Rodrigues
    Qualitative Theory of Dynamical Systems, 2016, 15 : 309 - 326
  • [32] On the asymptotic geometry of area-preserving maps
    Polterovich, L
    Siburg, KF
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (2-3) : 233 - 243
  • [33] ORGANIZATION OF CHAOS IN AREA-PRESERVING MAPS
    DANA, I
    PHYSICAL REVIEW LETTERS, 1990, 64 (20) : 2339 - 2342
  • [34] Periodic trajectories in piecewise-linear maps
    Mitrovski, CD
    Kocarev, LM
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (10): : 1244 - 1246
  • [35] Bifurcation analysis of oscillators with piecewise-linear characteristics
    Chen, YS
    Yu, W
    Liang, JS
    Xie, WH
    ELEVENTH WORLD CONGRESS IN MECHANISM AND MACHINE SCIENCE, VOLS 1-5, PROCEEDINGS, 2004, : 1451 - 1456
  • [36] The bifurcation structure within robust chaos for two-dimensional piecewise-linear maps
    Ghosh, Indranil
    Mclachlan, Robert I.
    Simpson, David J. W.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [37] CHAOTIFYING 2-D PIECEWISE-LINEAR MAPS VIA A PIECEWISE-LINEAR CONTROLLER FUNCTION
    Elhadj, Z.
    Sprott, J. C.
    NONLINEAR OSCILLATIONS, 2011, 13 (03): : 352 - 360
  • [38] Controllability for a class of area-preserving twist maps
    Vaidya, U
    Mezic, I
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 234 - 246
  • [39] Creation of coherent structures in area-preserving maps
    Gupte, Neelima
    Sharma, Ashutosh
    PHYSICS LETTERS A, 2007, 365 (04) : 295 - 300
  • [40] NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS
    BERRETTI, A
    CELLETTI, A
    CHIERCHIA, L
    FALCOLINI, C
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) : 1613 - 1630