Aldehyde dehydrogenase and ATP binding cassette transporter G2 (ABCG2) functional assays isolate different populations of prostate stem cells where ABCG2 function selects for cells with increased stem cell activity

被引:23
|
作者
Gangavarapu, Kalyan J. [1 ,2 ]
Azabdaftari, Gissou [3 ]
Morrison, Carl D. [3 ]
Miller, Austin [4 ]
Foster, Barbara A. [1 ,2 ]
Huss, Wendy J. [1 ,2 ,5 ]
机构
[1] Roswell Pk Canc Inst, Dept Pharmacol, Buffalo, NY 14263 USA
[2] Roswell Pk Canc Inst, Dept Therapeut, Buffalo, NY 14263 USA
[3] Roswell Pk Canc Inst, Dept Pathol, Buffalo, NY 14263 USA
[4] Roswell Pk Canc Inst, Dept Biostat, Buffalo, NY 14263 USA
[5] Roswell Pk Canc Inst, Dept Urol Oncol, Buffalo, NY 14263 USA
来源
STEM CELL RESEARCH & THERAPY | 2013年 / 4卷
关键词
UROGENITAL SINUS; INITIATING CELLS; DRUG-RESISTANCE; SIDE POPULATION; MARKER; TUMOR; MESENCHYME; METASTASIS; EXPRESSION; PREDICTOR;
D O I
10.1186/scrt343
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Introduction: High expression of aldehyde dehydrogenase1A1 (ALDH1A1) is observed in many organs and tumors and may identify benign and cancer stem cell populations. Methods: In the current study, the stem cell characteristics were determined in cells isolated from human prostate cell lines and clinical prostate specimens based upon the ALDEFLUOR (TM) assay. Cells isolated based on the ALDEFLUOR (TM) assay were compared to cells isolated based on ATP binding cassette transporter G2 (ABCG2) activity using the side population assay. To test for stem cell characteristics of self-renewal and multipotency, cells with high and low ALDH1A1 activity, based on the ALDEFLUOR (TM) assay (ALDH(Hi) and ALDH(Low)), were isolated from prostate clinical specimens and were recombined with rat urogenital sinus mesenchyme to induce prostate gland formation. Results: The percentage of ALDH(Hi) cells in prostate cell lines (RWPE-1, RWPE-2, CWR-R1, and DU-145) was 0.5 to 6%, similarly in non-tumor and tumor clinical specimens the percentage of ALDH(Hi) cells was 0.6 to 4%. Recombinants using ALDH(Hi) cells serially generated prostate tissue up to three generations with as few as 250 starting cells. Immunohistochemical analysis of the recombinants using ALDH(Hi) cells contained prostatic glands frequently expressing androgen receptor (AR), p63, chromogranin A, ALDH1A1, ABCG2, and prostate specific antigen (PSA), compared to their ALDH(Low) counterparts. Inhibition of ALDH resulted in the reduction of sphere formation capabilities in the CWR-R1, but not in the RWPE-2 and DU-145, prostate cell lines. ABCG2 inhibition resulted in a more robust decrease of sphere formation in androgen sensitive cell lines, CWR-R1 and RWPE-2, but not androgen insensitive DU-145. ALDH1A1 expression was enriched in ALDH(Hi) cells and non-side population cells. ABCG2 expression was only enriched in side population cells. Conclusions: The percentage of ALDH(Hi) cells in prostate cell lines and prostate tissue was consistently higher compared to cells with high ABCG2 activity, identified with the side population assay. The expression of the stem and differentiation markers indicates the ALDH(Hi) recombinants contained cells with self-renewal and multipotency activity. When the two assays were directly compared, cells with the side population phenotype demonstrated more stem cell potential in the tissue recombination assay compared to ALDH(Hi) cells. The increased stem cell potential of side population cells in the tissue recombination assay and the decrease in sphere formation when ABCG2 is inhibited indicates that the side population enriches for prostate stem cells.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] ATP-binding cassette transporter ABCG2/BCRP inhibition sensitizes CD133+cells to MEK/BRAF inhibitors
    Pauzi, Abrar Mohamad
    CANCER RESEARCH, 2015, 75
  • [32] Generation of multidrug resistant human tissues by overexpression of the ABCG2 multidrug transporter in embryonic stem cells
    Erdei, Zsuzsa
    Schamberger, Anita
    Torok, Gyorgy
    Szebenyi, Kornelia
    Varady, Gyorgy
    Orban, Tamas I.
    Homolya, Laszlo
    Sarkadi, Balks
    Apati, Agota
    PLOS ONE, 2018, 13 (04):
  • [33] Synthetic Analogs of Curcumin Modulate the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCG2
    Murakami, Megumi
    Ohnuma, Shinobu
    Fukuda, Michihiro
    Chufan, Eduardo E.
    Kudoh, Katsuyoshi
    Kanehara, Keigo
    Sugisawa, Norihiko
    Ishida, Masaharu
    Naitoh, Takeshi
    Shibata, Hiroyuki
    Iwabuchi, Yoshiharu
    Ambudkar, Suresh V.
    Unno, Michiaki
    DRUG METABOLISM AND DISPOSITION, 2017, 45 (11) : 1166 - 1177
  • [34] ATP Binding Cassette Sub-family Member 2 (ABCG2) and Xenobiotic Exposure During Early Mouse Embryonic Stem Cell Differentiation
    Rosen, Mitchell B.
    Jeffay, Susan C.
    Nichols, Harriette P.
    Hoopes, Maria R.
    Hunter, E. Sidney
    BIRTH DEFECTS RESEARCH, 2018, 110 (01): : 35 - 47
  • [35] ABCG2: A potential marker of stem cells and novel target in stern cell and cancer therapy
    Ding, Xi-wei
    Wu, Jun-hua
    Jiang, Chun-ping
    LIFE SCIENCES, 2010, 86 (17-18) : 631 - 637
  • [36] Identification of ATP binding cassette transporter G2 (ABCG2) gene in mammary gland of Xinong Saanen Goat and its expression profile during lactation.
    Wu, H. J.
    Luo, J.
    Wu, N.
    Matand, K.
    Zhang, L. J.
    Yang, B. J.
    Han, X. F.
    Wang, H. B.
    Zhang, N.
    Yu, G.
    Shan, C. Y.
    JOURNAL OF DAIRY SCIENCE, 2007, 90 : 42 - 42
  • [37] Reversal of Cancer Multidrug Resistance (MDR) Mediated by ATP-Binding Cassette Transporter G2 (ABCG2) by AZ-628, a RAF Kinase Inhibitor
    Wang, Jing-Quan
    Teng, Qiu-Xu
    Lei, Zi-Ning
    Ji, Ning
    Cui, Qingbin
    Fu, Han
    Lin, Lizhu
    Yang, Dong-Hua
    Fan, Ying-Fang
    Chen, Zhe-Sheng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [38] A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport
    Mitomo, H
    Kato, R
    Ito, A
    Kasamatsu, S
    Ikegami, Y
    Kii, I
    Kudo, A
    Kobatake, E
    Sumino, Y
    Ishikawa, T
    BIOCHEMICAL JOURNAL, 2003, 373 : 767 - 774
  • [39] Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin
    Chearwae, Wanida
    Shukla, Suneet
    Limtrakul, Pornngarm
    Ambudkar, Suresh V.
    MOLECULAR CANCER THERAPEUTICS, 2006, 5 (08) : 1995 - 2006
  • [40] The role of ABCG2 in maintaining the viability and proliferative activity of bone marrow mesenchymal stem cells in hypoxia
    Poleshko A.G.
    Volotovski I.D.
    Biophysics, 2016, 61 (2) : 271 - 276