Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO2 reduction to ethylene

被引:11
|
作者
Jia, Shuaiqiang [1 ,3 ]
Zhu, Qinggong [2 ]
Wu, Haihong [1 ,3 ]
Han, Shitao [1 ,3 ]
Chu, Mengen [1 ,3 ]
Zhai, Jianxin [1 ,3 ]
Xing, Xueqing [4 ]
Xia, Wei [1 ,3 ]
He, Mingyuan [1 ,3 ]
Han, Buxing [1 ,2 ,3 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Green Chem & Chem Proc, Sch Chem & Mol Engn, Shanghai 200062, Peoples R China
[2] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing Natl Lab Mol Sci,CAS Key Lab Colloid & In, Beijing 100190, Peoples R China
[3] Inst Ecochongming, 20 Cuiniao Rd, Shanghai 202162, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; ELECTROREDUCTION; CATALYSTS; SELECTIVITY;
D O I
10.1039/d1sc06964k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Use of multi-metallic catalysts to enhance reactions is an interesting research area, which has attracted much attention. In this work, we carried out the first work to prepare trimetallic electrocatalysts by a one-step co-electrodeposition process. A series of Cu-X-Y (X and Y denote different metals) catalysts were fabricated using this method. It was found that Cu10La1Cs1 (the content ratio of Cu2+, La3+, and Cs+ in the electrolyte is 10 : 1 : 1 in the deposition process), which had an elemental composition of Cu10La0.16Cs0.14 in the catalyst, formed a composite structure on three dimensional (3D) carbon paper (CP), which showed outstanding performance for CO2 electroreduction reaction (CO2RR) to produce ethylene (C2H4). The faradaic efficiency (FE) of C2H4 could reach 56.9% with a current density of 37.4 mA cm(-2) in an H-type cell, and the partial current density of C2H4 was among the highest ones up to date, including those over the catalysts consisting of Cu and noble metals. Moreover, the FE of C2+ products (C2H4, ethanol, and propanol) over the Cu10La1Cs1 catalyst in a flow cell reached 70.5% with a high current density of 486 mA cm(-2). Experimental and theoretical studies suggested that the doping of La and Cs into Cu could efficiently enhance the reaction efficiency via a combination of different effects, such as defects, change of electronic structure, and enhanced charge transfer rate. This work provides a simple method to prepare multi-metallic catalysts and demonstrates a successful example for highly efficient CO2RR using non-noble metals.
引用
收藏
页码:7509 / 7515
页数:7
相关论文
共 50 条
  • [21] Heterogeneous Electrocatalysts for CO2 Reduction
    Yang, Chao
    Wang, Yuhang
    Qian, Linping
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02): : 1034 - 1044
  • [22] Bimetallic Electrocatalysts for CO2 Reduction
    Zhu, Wenlei
    Tackett, Brian M.
    Chen, Jingguang G.
    Jiao, Feng
    TOPICS IN CURRENT CHEMISTRY, 2018, 376 (06)
  • [23] Polypyridyl electrocatalysts for the reduction of CO2
    Lieske, Lauren
    Machan, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [24] Bimetallic Electrocatalysts for CO2 Reduction
    Wenlei Zhu
    Brian M. Tackett
    Jingguang G. Chen
    Feng Jiao
    Topics in Current Chemistry, 2018, 376
  • [25] Perspective on the one-step CO2 hydrogenation to dimethyl ether
    Liu C.
    Liu Z.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (03): : 1115 - 1120
  • [26] One-step nanocasting synthesis of sulfur and nitrogen co-doped ordered mesoporous carbons as efficient electrocatalysts for oxygen reduction
    Song, Xiaozeng
    Ren, Hongxin
    Ding, Junjie
    Wang, Chenfei
    Yin, Xin
    Wang, Haiwen
    MATERIALS LETTERS, 2015, 159 : 280 - 283
  • [27] Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction
    Zhang, Baohua
    Jiang, Yinzhu
    Gao, Mingxia
    Ma, Tianyi
    Sun, Wenping
    Pan, Hongge
    NANO ENERGY, 2021, 80
  • [28] Low cost and efficient alloy electrocatalysts for CO2 reduction to formate
    Rasul, Shahid
    Pugnant, Adrien
    Xiang, Hang
    Fontmorin, Jean-Marie
    Yu, Eileen H.
    JOURNAL OF CO2 UTILIZATION, 2019, 32 : 1 - 10
  • [29] Rapid, one-step fabrication of MoS2 electrocatalysts by hydrothermal electrodeposition
    Nakayasu, Yuta
    Kobayashi, Hiroaki
    Katahira, Shusuke
    Tomai, Takaaki
    Honma, Itaru
    ELECTROCHEMISTRY COMMUNICATIONS, 2022, 134
  • [30] Efficient reduction of CO2 to CO by CdAl-LDHs nanostructured electrocatalysts in ionic liquids
    Tan, Fang
    Liu, Tianxia
    Zhang, Yaping
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2024, 451