Dual Convolutional LSTM Network for Referring Image Segmentation

被引:35
|
作者
Ye, Linwei [1 ]
Liu, Zhi [2 ,3 ]
Wang, Yang [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3T 2N2, Canada
[2] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Image segmentation; Visualization; Decoding; Linguistics; Task analysis; Logic gates; Computer vision; Referring image segmentation; encoder-decoder; vision and language; deep learning;
D O I
10.1109/TMM.2020.2971171
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider referring image segmentation. It is a problem at the intersection of computer vision and natural language understanding. Given an input image and a referring expression in the form of a natural language sentence, the goal is to segment the object of interest in the image referred by the linguistic query. To this end, we propose a dual convolutional LSTM (ConvLSTM) network to tackle this problem. Our model consists of an encoder network and a decoder network, where ConvLSTM is used in both encoder and decoder networks to capture spatial and sequential information. The encoder network extracts visual and linguistic features for each word in the expression sentence, and adopts an attention mechanism to focus on words that are more informative in the multimodal interaction. The decoder network integrates the features generated by the encoder network at multiple levels as its input and produces the final precise segmentation mask. Experimental results on four challenging datasets demonstrate that the proposed network achieves superior segmentation performance compared with other state-of-the-art methods.
引用
收藏
页码:3224 / 3235
页数:12
相关论文
共 50 条
  • [21] Bi-directional Relationship Inferring Network for Referring Image Segmentation
    Hu, Zhiwei
    Feng, Guang
    Sun, Jiayu
    Zhang, Lihe
    Lu, Huchuan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4423 - 4432
  • [22] Dual Convolutional Neural Network for Image Steganalysis
    Kim, Jaeyoung
    Kang, Sanghoon
    Park, Hanhoon
    Park, Jong-Il
    2019 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2019,
  • [23] Analysis of Convolutional Neural Network for Fundus Image Segmentation
    Shirokanev, A. S.
    Ilyasova, N. Yu
    Demin, N. S.
    2019 4TH INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2019), 2020, 1438
  • [24] Convolutional Neural Network Based Image Segmentation: A Review
    Ajmal, Hina
    Rehman, Saad
    Farooq, Umar
    Ain, Qurrat U.
    Riaz, Farhan
    Hassan, Ali
    PATTERN RECOGNITION AND TRACKING XXIX, 2018, 10649
  • [25] Image semantic segmentation with an improved fully convolutional network
    Tseng, Kuo-Kun
    Sun, Haichuan
    Liu, Junwu
    Li, Jiaqi
    Yung, K. L.
    Ip, W. H.
    SOFT COMPUTING, 2020, 24 (11) : 8253 - 8273
  • [26] Image semantic segmentation with an improved fully convolutional network
    Kuo-Kun Tseng
    Haichuan Sun
    Junwu Liu
    Jiaqi Li
    K. L. Yung
    W. H. Ip
    Soft Computing, 2020, 24 : 8253 - 8273
  • [27] Morphable Convolutional Neural Network for Biomedical Image Segmentation
    Jiang, Huaipan
    Sarma, Anup
    Fan, Mengran
    Ryoo, Jihyun
    Arunachalam, Meenakshi
    Naveen, Sharada
    Kandemir, Mahmut T.
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1522 - 1525
  • [28] Fully convolutional attention network for biomedical image segmentation
    Cheng, Junlong
    Tian, Shengwei
    Yu, Long
    Lu, Hongchun
    Lv, Xiaoyi
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 107
  • [29] Parallel global convolutional network for semantic image segmentation
    Bai, Xing
    Zhou, Jun
    IET IMAGE PROCESSING, 2021, 15 (01) : 252 - 259
  • [30] A regularized convolutional neural network for semantic image segmentation
    Jia, Fan
    Liu, Jun
    Tai, Xue-Cheng
    ANALYSIS AND APPLICATIONS, 2021, 19 (01) : 147 - 165