Degree of Approximation for Bivariate Generalized Bernstein Type Operators

被引:39
|
作者
Acar, Tuncer [2 ]
Kajla, Arun [1 ]
机构
[1] Cent Univ Haryana, Dept Math, Pali 123031, Haryana, India
[2] Selcuk Univ, Dept Math, Fac Sci, TR-42003 Selcuklu Konya, Turkey
关键词
GBS operators; B-continuous function; B-differentiable function; mixed modulus of smoothness; K-FUNCTIONALS; GBS OPERATORS; SMOOTHNESS;
D O I
10.1007/s00025-018-0838-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study an extension of the bivariate generalized Bernstein operators based on a non-negative real parameters. For these operators we obtain the order of approximation using Peetre's K-functional, a Voronovskaja type theorem and the degree of approximation by means of the Lipschitz class. Further, we consider the Generalized Boolean Sum operators of generalized Bernstein type and we study the degree of approximation in terms of the mixed modulus of continuity. Finally, we show the comparisons by some illustrative graphics in Maple for the convergence of the operators to certain functions.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type
    Kajla, Arun
    Miclaus, Dan
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [22] Approximation of Functions by Generalized Parametric Blending-Type Bernstein Operators
    Aktuglu, Huseyin
    Zaheriani, S. Yashar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (05): : 1495 - 1504
  • [23] Approximation properties of the new type generalized Bernstein-Kantorovich operators
    Kara, Mustafa
    AIMS MATHEMATICS, 2022, 7 (03): : 3826 - 3844
  • [24] Generalized Bernstein Type Operators on Unbounded Interval and Some Approximation Properties
    Ahasan, Mohd
    Khan, Faisal
    Mursaleen, Mohammad
    FILOMAT, 2019, 33 (09) : 2797 - 2808
  • [25] Approximation of Functions by Generalized Parametric Blending-Type Bernstein Operators
    Hüseyin Aktuğlu
    S. Yashar Zaheriani
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1495 - 1504
  • [26] APPROXIMATION PROPERTIES OF GENERALIZED BLENDING TYPE LOTOTSKY-BERNSTEIN OPERATORS
    Aktuglu, Huseyin
    Gezer, Halil
    Baytunc, Erdem
    Atamert, Mehmet Salih
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 707 - 728
  • [27] Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain
    Aslan, Resat
    Izgi, Aydin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 467 - 484
  • [28] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [29] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [30] DEGREE OF L1-APPROXIMATION TO INTEGRABLE FUNCTIONS BY BERNSTEIN TYPE OPERATORS
    RAZI, Q
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (12): : 1217 - 1226