Dense Prediction Transformer for Scale Estimation in Monocular Visual Odometry

被引:3
|
作者
Francani, Andre O. [1 ]
Maximo, Marcos R. O. A. [1 ]
机构
[1] Aeronaut Inst Technol, Autonomous Computat Syst Lab Lab SCA, Comp Sci Div, Sao Jose Dos Campos, SP, Brazil
关键词
monocular visual odometry; scale estimation; deep learning; monocular depth estimation; vision transformer;
D O I
10.1109/LARS/SBR/WRE56824.2022.9995735
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Monocular visual odometry consists of the estimation of the position of an agent through images of a single camera, and it is applied in autonomous vehicles, medical robots, and augmented reality. However, monocular systems suffer from the scale ambiguity problem due to the lack of depth information in 2D frames. This paper contributes by showing an application of the dense prediction transformer model for scale estimation in monocular visual odometry systems. Experimental results show that the scale drift problem of monocular systems can be reduced through the accurate estimation of the depth map by this model, achieving competitive state-of-the-art performance on a visual odometry benchmark.
引用
收藏
页码:312 / 317
页数:6
相关论文
共 50 条
  • [41] An Adaptive Strategy For Monocular Visual Odometry
    Xie, Shengguang
    Lin, Mengxiang
    Hang, Meng
    Ding, Rong
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE (ICRAI 2017), 2015, : 46 - 50
  • [42] Monocular Outlier Detection for Visual Odometry
    Buczko, Martin
    Willert, Volker
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 739 - 745
  • [43] Fast Techniques for Monocular Visual Odometry
    Mirabdollah, M. Hossein
    Mertsching, Baerbel
    PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 297 - 307
  • [44] Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
    Zhan, Huangying
    Garg, Ravi
    Weerasekera, Chamara Saroj
    Li, Kejie
    Agarwal, Harsh
    Reid, Ian
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 340 - 349
  • [45] Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments
    Almalioglu, Yasin
    Santamaria-Navarro, Angel
    Morrell, Benjamin
    Agha-mohammadi, Ali-akbar
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3534 - 3541
  • [46] Enhancing self-supervised monocular depth estimation with traditional visual odometry
    Andraghetti, Lorenzo
    Myriokefalitakis, Panteleimon
    Dovesi, Pier Luigi
    Luque, Belen
    Poggi, Matteo
    Pieropan, Alessandro
    Mattoccia, Stefano
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 424 - 433
  • [47] Pose Estimation Based on Monocular Visual Odometry and Lane Detection for Intelligent Vehicles
    Galarza, Juan
    Perez, Esteban
    Serrano, Esteban
    Tapia, Andres
    Aguilar, Wilbert G.
    AUGMENTED REALITY, VIRTUAL REALITY, AND COMPUTER GRAPHICS, AVR 2018, PT II, 2018, 10851 : 562 - 566
  • [48] Combining Points and Lines for Camera Pose Estimation and Optimization in Monocular Visual Odometry
    Li, Haoang
    Yao, Jian
    Lu, Xiaohu
    Wu, Junlin
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1289 - 1296
  • [49] Monocular Visual-Inertial Odometry Based on Local Maximum A Posteriori Estimation
    Ye, Bipeng
    Gong, Guanghong
    Li, Ni
    Gao, Yunbo
    Zhang, Tiantian
    Hou, Guoqing
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2782 - 2789
  • [50] Incorporating Learned Depth Perception Into Monocular Visual Odometry to Improve Scale Recovery
    Mailka, Hamza
    Abouzahir, Mohamed
    Ramzi, Mustapha
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 1060 - 1068