SINGULAR CURVES AND THE ETALE BRAUER-MANIN OBSTRUCTION FOR SURFACES

被引:0
|
作者
Harpaz, Yonatan [1 ]
Skorobogatov, Alexei N. [2 ,3 ]
机构
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
关键词
RATIONAL-POINTS; DESCENT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an elementary construction of a smooth and projective surface over an arbitrary number field k that is a counterexample to the Hasse principle but has infinite etale Brauer-Manin set. Our surface has a surjective morphism to a curve with exactly one k-point such that the unique k-fibre is geometrically a union of projective lines with an adelic point and the trivial Brauer group, but no k-point.
引用
收藏
页码:765 / 778
页数:14
相关论文
共 50 条