Performance of the Levenberg-Marquardt neural network approach in nuclear mass prediction

被引:63
|
作者
Zhang, Hai Fei [1 ]
Wang, Li Hao [1 ]
Yin, Jing Peng [1 ]
Chen, Peng Hui [2 ]
Zhang, Hong Fei [2 ]
机构
[1] Northwest Inst Nucl Technol, Xian 710024, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
binding energies and masses; liquid drop model; Levenberg Marquardt; neural network approach; SHELL;
D O I
10.1088/1361-6471/aa5d78
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Resorting to a neural network approach we refined several representative and sophisticated global nuclear mass models within the latest atomic mass evaluation (AME2012). In the training process, a quite robust algorithm named the Levenberg-Marquardt (LM) method is employed to determine the weights and biases of the neural network. As a result, this LM neural network approach demonstrates a very useful tool for further improving the accuracy of mass models. For a simple liquid drop formula the root mean square (rms) deviation between the predictions and the 2353 experimental known masses are sharply reduced from 2.455 MeV to 0.235 MeV, and for the other revisited mass models, the rms is remarkably improved by about 30%.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Research on Evaluation of Enterprise Performance Based on BP Neural Network Improved by Levenberg-Marquardt Algorithm
    Du, Wanyin
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 167 - 171
  • [22] Robust Satellite-Orbit Prediction Using Artificial Neural Network Based on Levenberg-Marquardt Algorithm
    Chang, Shih Yu
    Wu, Hsiao-Chun
    Sotiropoulos, Fotios
    Goni, Usman S.
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 1329 - 1334
  • [23] The assessment of Levenberg-Marquardt and Bayesian Framework training algorithm for prediction of concrete shrinkage by the artificial neural network
    Garoosiha, Hosein
    Ahmadi, Jamal
    Bayat, Hossein
    COGENT ENGINEERING, 2019, 6 (01):
  • [25] Corrosion Rate Prediction for Underground Gas Pipelines Using A Levenberg-Marquardt Artificial Neural Network (ANN)
    Ahmaid, Ashref
    Khoshnaw, Fuad
    ADVANCES IN MATERIALS SCIENCE, 2024, 24 (04): : 5 - 22
  • [26] MAKING REASSIGNMENT ADJUSTABLE: THE LEVENBERG-MARQUARDT APPROACH
    Auger, F.
    Chassande-Mottin, E.
    Flandrin, P.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3889 - 3892
  • [27] NEURAL NETWORKS PREDICTION FOR SEISMIC RESPONSE OF STRUCTURE UNDER THE LEVENBERG-MARQUARDT ALGORITHM
    徐赵东
    沈亚鹏
    李爱群
    Academic Journal of Xi'an Jiaotong University, 2003, (01) : 15 - 19
  • [28] Lateral control of autonomous vehicle using levenberg-marquardt neural network algorithm
    Lee, K.B.
    Kim, Y.J.
    Ahn, O.S.
    Kim, Y.B.
    International Journal of Automotive Technology, 2002, 3 (02) : 79 - 88
  • [29] A Novel Modification on the Levenberg-Marquardt Algorithm for Avoiding Overfitting in Neural Network Training
    Iplikci, Serdar
    Bilgi, Batuhan
    Menemen, Ali
    Bahtiyar, Bedri
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 201 - 207
  • [30] An Improved Levenberg-Marquardt Algorithm with Adaptive Learning Rate for RBF Neural Network
    An Ru
    Li Wen Jing
    Han Hong Gui
    Qiao Jun Fei
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3630 - 3635