A variational change detection method for multitemporal SAR images

被引:7
|
作者
Chen, Yin [1 ]
Cremers, Armin B. [2 ]
Cao, Zhiguo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[2] Univ Bonn, Inst Comp Sci 3, Bonn, Germany
关键词
UNSUPERVISED CHANGE DETECTION; ACTIVE CONTOURS; ALGORITHMS; MODEL;
D O I
10.1080/2150704X.2014.904970
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this letter, we develop a variational model for change detection in multitemporal synthetic aperture radar (SAR) images. SAR images are typically polluted by multiplicative noise, therefore ordinary active contour model (ACM), or the snake model, for image segmentation is not suitable for change detection in multitemporal SAR images. Our model is a generalization of ACM under the assumption that the image data fits the Generalized Gaussian Mixture (GGM) model. Our method first computes the log-ratio image of the input multitemporal SAR images. Then the method iteratively executes the following two steps until convergence: (1) estimate the parameters for the generalized Gaussian distributions inside and outside the current evolving curve using maximum-likelihood estimation; (2) evolve the current curve according to the image data and the parameters previously estimated. When convergence is achieved, the location of the evolving curve depicts the changed and the unchanged areas. Experiments were carried out on both semi-simulated data set and real data set. Results showed that the proposed method achieves total error rates of 0.43% and 1.05%, for semi-simulated and real data sets, respectively, which were comparable to other prevalent methods.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 50 条
  • [21] A Multisquint Framework for Change Detection in High-Resolution Multitemporal SAR Images
    Dominguez, Elias Mendez
    Meier, Erich
    Small, David
    Schaepman, Michael E.
    Bruzzone, Lorenzo
    Henke, Daniel
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3611 - 3623
  • [22] A support vector domain method for change detection in multitemporal images
    Bovolo, F.
    Camps-Valls, G.
    Bruzzone, L.
    PATTERN RECOGNITION LETTERS, 2010, 31 (10) : 1148 - 1154
  • [23] A NOVEL HIERARCHICAL METHOD FOR CHANGE DETECTION IN MULTITEMPORAL HYPERSPECTRAL IMAGES
    Liu, Sicong
    Bruzzone, Lorenzo
    Bovolo, Francesca
    Du, Peijun
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 823 - 826
  • [24] Detecting a step pattern of change in multitemporal SAR images
    Pellizzeri, TM
    Lombardo, P
    PROCEEDINGS OF THE 2001 IEEE RADAR CONFERENCE, 2001, : 294 - 299
  • [25] Fraction images in multitemporal change detection
    Haertel, V
    Shimabukuro, YE
    Almeida, R
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (23) : 5473 - 5489
  • [26] Nonparametric Change Detection in Multitemporal SAR Images Based on Mean-Shift Clustering
    Aiazzi, Bruno
    Alparone, Luciano
    Baronti, Stefano
    Garzelli, Andrea
    Zoppetti, Claudia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04): : 2022 - 2031
  • [27] CHANGE DETECTION IN MULTITEMPORAL HR SAR IMAGES: A HYPOTHESIS TEST-BASED APPROACH
    Horta, Michelle M.
    Mascarenhas, Nelson D. A.
    Sportouche, H.
    Seichepine, N.
    Tupin, F.
    Nicolas, J. -M.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 374 - 377
  • [28] Building Change Detection Using Coherent and Incoherent Features from Multitemporal SAR Images
    Feng, Hao
    Zhang, Lu
    Liao, Mingsheng
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [29] An approach to unsupervised change detection in multitemporal SAR images based on the generalized Gaussian distribution
    Bazi, Y
    Bruzzone, L
    Melgani, F
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1402 - 1405
  • [30] An unsupervised approach based on geometrical structures to automatic change detection in multitemporal SAR images
    Chang, Bao
    Zhang, Gong
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2011, 39 (09): : 2125 - 2129