Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

被引:4
|
作者
Gus'kov, S. Yu. [1 ,2 ]
Nicolai, Ph. [3 ]
Ribeyre, X. [3 ]
Tikhonchuk, V. T. [3 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[3] Univ Bordeaux, Ctr Lasers Intenses & Applicat, CNRS, CEA, F-33405 Talence, France
关键词
GENERATION;
D O I
10.1134/S106377611509006X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation of state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 50 条
  • [21] Investigation on the origin of hot electrons in laser plasma interaction at shock ignition intensities
    Cristoforetti, G.
    Baffigi, F.
    Batani, D.
    Dudzak, R.
    Fedosejevs, R.
    Filippov, E. D.
    Gajdos, P.
    Juha, L.
    Khan, M.
    Koester, P.
    Krus, M.
    Mancelli, D.
    Martynenko, A. S.
    Nicolai, Ph.
    Pikuz, S. A.
    Renner, O.
    Tentori, A.
    Volpe, L.
    Woolsey, N.
    Zeraouli, G.
    Gizzi, L. A.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Characterization of hot electrons generated by laser±plasma interaction at shock ignition intensities
    EDFilippov
    MKhan
    ATentori
    PGajdos
    ASMartynenko
    RDudzak
    PKoester
    GZeraouli
    DMancelli
    FBaffigi
    LAGizzi
    SAPikuz
    PhDNicola
    NCWoolsey
    RFedosejevs
    MKrus
    LJuha
    DBatani
    ORenner
    GCristoforetti
    Matter and Radiation at Extremes, 2023, (06) : 82 - 97
  • [23] Fast heating scalable to laser fusion ignition
    R. Kodama
    H. Shiraga
    K. Shigemori
    Y. Toyama
    S. Fujioka
    H. Azechi
    H. Fujita
    H. Habara
    T. Hall
    Y. Izawa
    T. Jitsuno
    Y. Kitagawa
    K. M. Krushelnick
    K. L. Lancaster
    K. Mima
    K. Nagai
    M. Nakai
    H. Nishimura
    T. Norimatsu
    P. A. Norreys
    S. Sakabe
    K. A. Tanaka
    A. Youssef
    M. Zepf
    T. Yamanaka
    Nature, 2002, 418 : 933 - 934
  • [24] Fast ignition and related plasma physics
    Mima, K
    HIGH-FIELD SCIENCE, 2000, : 3 - 27
  • [25] Imploded Plasma Heating by Irradiation of Heating Laser through a Cone with a Hole for Fast Ignition
    Taga, M.
    Shiraga, H.
    Fujioka, S.
    Azechi, H.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688
  • [26] Deleterious effects of nonthermal electrons in shock ignition concept
    Nicolai, Ph
    Feugeas, J-L
    Touati, M.
    Ribeyre, X.
    Gus'kov, S.
    Tikhonchuk, V.
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [27] Mechanism of shock wave ignition of aluminum particle
    Hong, Tao
    Qin, Cheng-Sen
    Baozha Yu Chongji/Explosion and Shock Waves, 2003, 23 (04): : 295 - 299
  • [28] The effect of a shock wave on the ignition behavior of aluminum particles in a shock tube
    Schloeffel, G.
    Eichhorn, A.
    Albers, H.
    Mundt, Ch.
    Seiler, F.
    Zhang, F.
    COMBUSTION AND FLAME, 2010, 157 (03) : 446 - 454
  • [29] Ignition and detonation onset behind incident shock wave in the shock tube
    Kiverin, A. D.
    Yakovenko, I. S.
    COMBUSTION AND FLAME, 2019, 204 : 227 - 236
  • [30] Finite Mach number spherical shock wave, application to shock ignition
    Vallet, A.
    Ribeyre, X.
    Tikhonchuk, V.
    PHYSICS OF PLASMAS, 2013, 20 (08)