A study of stress relaxation in AZ31 using high-energy X-ray diffraction

被引:11
|
作者
Tang, W. [1 ]
Halm, K. L. [1 ]
Trinkle, D. R. [1 ]
Koker, M. K. A. [2 ]
Lienert, U. [4 ]
Kenesei, P. [3 ]
Beaudoin, A. J. [1 ]
机构
[1] Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
[2] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] Deutsch Elektronen Synchrotron Photon Sci, Hamburg, Germany
关键词
Mg alloy; High-energy X-ray diffraction; Stress relaxation; Plasticity; Cyclic micro-plasticity; MAGNESIUM SINGLE-CRYSTALS; DEFORMATION MECHANISMS; TENSILE; ALLOY; STRAIN; BEHAVIOR; CREEP; SLIP; FLOW;
D O I
10.1016/j.actamat.2015.08.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The micro-plasticity of the Mg alloy AZ31 is explored through high-energy X-ray diffraction (HEXD). Through cyclic loading of the sample, a softening response is found to follow the resolved shear stress for basal slip. Stress relaxation is studied by applying an incremental elongation increase while continuously collecting images from a detector array. The rate exponent associated with a particular reflection is developed by evaluating the average lattice strain in the loading direction from the composite detector image collected at a particular point in time, and then following the time evolution. A distinct rate exponent is identified for grain orientations that have a propensity for slip on second-order pyramidal planes, highlighting the capability to capture the simultaneous action of different deformation mechanisms through HEXD. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [41] Three-Dimensional X-Ray Diffraction Microscopy Using High-Energy X-Rays
    Henning F. Poulsen
    Dorte Juul Jensen
    Gavin B. M. Vaughan
    MRS Bulletin, 2004, 29 : 166 - 169
  • [42] Possibilities and limitations of X-ray diffraction using high-energy X-rays on a laboratory system
    Nijenhuis, J. Te
    Gateshki, M.
    Fransen, M. J.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2009, : 163 - 169
  • [43] Three-dimensional x-ray diffraction microscopy using high-energy x-rays
    Poulsen, HF
    Jensen, DJ
    Vaughan, GBM
    MRS BULLETIN, 2004, 29 (03) : 166 - 169
  • [44] Low temperature dielectric relaxation in ordinary perovskite ferroelectrics: enlightenment from high-energy x-ray diffraction
    Ochoa, D. A.
    Levit, R.
    Fancher, C. M.
    Esteves, G.
    Jones, J. L.
    Garcia, J. E.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (20)
  • [45] Determination of directionally dependent structural and microstructural information using high-energy X-ray diffraction
    Daniels, J. E.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 : 1109 - 1114
  • [46] Stress relaxation in rolled AZ31 magnesium alloy sheets
    Balik, J.
    Lukac, P.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2015, 53 (06): : 385 - 389
  • [47] High-energy X-ray diffraction using the Pixium 4700 flat-panel detector
    Daniels, J. E.
    Drakopoulos, M.
    JOURNAL OF SYNCHROTRON RADIATION, 2009, 16 : 463 - 468
  • [48] Scanning three-dimensional X-ray diffraction microscopy using a high-energy microbeam
    Hayashi, Y.
    Hirose, Y.
    Seno, Y.
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION (SRI2015), 2016, 1741
  • [49] Investigating the tetragonal/cubic phase transformation using in situ high-energy x-ray diffraction
    Hoai Nguyen
    Li, Tao
    Chen, Zonghai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [50] Precision of lattice strain and orientation measurements using high-energy monochromatic X-ray diffraction
    Edmiston, John K.
    Barton, Nathan R.
    Bernier, Joel V.
    Johnson, George C.
    Steigmann, David J.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2011, 44 : 299 - 312