Global existence of solutions for the Poisson-Nernst-Planck system with steric effects

被引:9
|
作者
Hsieh, Chia-Yu [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Poisson-Nernst-Planck system; Steric effects; Global existence; ASYMPTOTIC-BEHAVIOR; TIME BEHAVIOR; EQUATIONS; MODEL; ELECTROLYTES; TRANSPORT; CHANNELS;
D O I
10.1016/j.nonrwa.2019.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the global existence of a modified Poisson-Nernst-Planck system with steric effects. This model involves cross-diffusion and non-local terms. The main idea of the proof is to approximate the system by truncating the diffusion matrix and apply the Schauder's fixed-point theorem. Moreover, we obtain L-2 uniform in time estimates from the energy inequality (3.5). The global existence then follows. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:34 / 54
页数:21
相关论文
共 50 条
  • [21] Do Bistable Steric Poisson-Nernst-Planck Models Describe Single-Channel Gating?
    Gavish, Nir
    Liu, Chun
    Eisenberg, Bob
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (20): : 5183 - 5192
  • [22] A meshless stochastic method for Poisson-Nernst-Planck equations
    Monteiro, Henrique B. N.
    Tartakovsky, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [23] Electroneutral models for dynamic Poisson-Nernst-Planck systems
    Song, Zilong
    Cao, Xiulei
    Huang, Huaxiong
    PHYSICAL REVIEW E, 2018, 97 (01):
  • [24] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889
  • [25] Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems
    Wang, Xiang-Sheng
    He, Dongdong
    Wylie, Jonathan J.
    Huang, Huaxiong
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [26] Application of the Poisson-Nernst-Planck equations to the migration test
    Krabbenhoft, K.
    Krabbenhoft, J.
    CEMENT AND CONCRETE RESEARCH, 2008, 38 (01) : 77 - 88
  • [27] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [28] Test of Poisson-Nernst-Planck theory in ion channels
    Corry, B
    Kuyucak, S
    Chung, SH
    JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (04): : 597 - 599
  • [29] Global Smooth Solution for Navier-Stokes/Poisson-Nernst-Planck System in R2
    Wang, Jinhuan
    Wang, Weike
    Wang, Yucheng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (02)
  • [30] Existence and uniqueness of a global weak solution of a Darcy-Nernst-Planck-Poisson system
    Department of Mathematics, University of Erlangen-Nuremberg, Cauerstr. 11, D-91058 Erlangen, Germany
    GAMM Mitteilungen, 2012, 2 (191-208)