Sharp upper and lower bounds for a sine polynomial

被引:6
|
作者
Alzer, Horst [1 ]
Kwong, Man Kam [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hunghom, Hong Kong, Peoples R China
关键词
Fejer-Jackson inequality; Sine polynomial; Sharp bounds;
D O I
10.1016/j.amc.2015.11.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for all n >= 1 and x is an element of (0, pi) we have alpha <= Sigma(n)(k=1) sin(kx)/k(n + 1 - k) <= beta with the best possible constant bounds alpha = 3 - root 33/64 root 30 - 2 root 33 = -0.18450... and beta = 1. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 50 条
  • [21] POLYNOMIAL FACTORIZATION - SHARP BOUNDS, EFFICIENT ALGORITHMS
    BEAUZAMY, B
    TREVISAN, V
    WANG, PS
    JOURNAL OF SYMBOLIC COMPUTATION, 1993, 15 (04) : 393 - 413
  • [22] SHARP POLYNOMIAL BOUNDS ON THE NUMBER OF SCATTERING POLES
    ZWORSKI, M
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (02) : 311 - 323
  • [23] Lower bounds for the polynomial calculus
    A.A. Razborov
    computational complexity, 1998, 7 : 291 - 324
  • [24] Lower bounds for the polynomial calculus
    Razborov, AA
    COMPUTATIONAL COMPLEXITY, 1998, 7 (04) : 291 - 324
  • [25] Sharp Polynomial Upper Bound on the Variance
    de Angelis, Marco
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 76 - 84
  • [26] Sharp lower bounds for Coulomb energy
    Bellazzini, Jacopo
    Ghimenti, Marco
    Ozawa, Tohru
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (03) : 621 - 632
  • [27] SHARP LOWER BOUNDS ON THE EIGENVALUES OF TREES
    YUAN, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 113 : 101 - 105
  • [28] Quasimodes and resonances: Sharp lower bounds
    Stefanov, P
    DUKE MATHEMATICAL JOURNAL, 1999, 99 (01) : 75 - 92
  • [29] Sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix and its applications
    You, Lihua
    Shu, Yujie
    Yuan, Pingzhi
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (01): : 113 - 128
  • [30] SHARP POWER MEAN BOUNDS FOR THE TANGENT AND HYPERBOLIC SINE MEANS
    Zhao, Tie-Hong
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1459 - 1472