The synergistic role of silica nanoparticle and anionic surfactant on the static and dynamic CO2 foam stability for enhanced heavy oil recovery: An experimental study

被引:78
|
作者
Zhao, Jing [1 ]
Torabi, Farshid [1 ]
Yang, Jun [1 ]
机构
[1] Univ Regina, Petr Syst Engn, Regina, SK S4S 0A2, Canada
关键词
CO2; Foam; Silica nanoparticle; Heavy oil recovery; Interfacial tension; Micromodel studies; CARBONATED WATER INJECTION; GRAFTED NANO-CELLULOSE; INTERFACIAL PROPERTIES; AQUEOUS FOAMS; POROUS-MEDIA; WETTABILITY; MECHANISMS; PARTICLES; ABSENCE;
D O I
10.1016/j.fuel.2020.119443
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 foam is a promising candidate in enhanced oil recovery and reducing anthropogenic CO2 emission through geo-sequestration due to its CO2 mobility control ability. However, instability of CO2 foam stabilized solely by surfactant strongly retards its application. Here, two types of silica nanoparticles (NPs) with varied hydrophobicity are used with sodium bis(2-ethylhexyl) sulfosuccinate (AOT) to increase CO2 foam stability. Through foamability and foam stability experiments, together with complementary experiments such as measurements of CO2-water interfacial tensions, particle zeta potential, and adsorption isotherm of surfactant, the stabilization mechanisms of AOT-NPs aqueous dispersions on the CO2 foam films are revealed. Oil recovery experiments are performed in an oil-wet micromodel where high permeability channels are included to mimic wormholes in unconsolidated sandstone reservoirs during sand production. Results show that the nanoparticle surface hydrophobicity strongly influences the interactions between particles and AOT. Partially hydrophobic NPs (NPB) are much more efficient in generating and stabilizing CO2 foam than hydrophilic NPs (NPA) when mixed with AOT in a proportion of 1: 0.16 (wt%/wt%). AOT-NPB dispersions improve the recovery in two aspects: First, the synergistic interactions between AOT and NPB leads to the adsorption of AOT on particle surfaces, thus enhancing mechanical strength of bubbles. High quality foam encompasses a fine foam texture and provides higher resistance to the gas flow, leading to a more uniform sweep. Second, AOT-NPB dispersions reduces oil/water IFT, promotes emulsification forming oil in water (O/W) emulsions, and alters glass surface wettability, leading to substantial incremental oil recovery.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs
    Davarpanah, Afshin
    Mirshekari, Behnam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (02) : 1161 - 1169
  • [32] Post-Surfactant CO2 Foam/Polymer-Enhanced Foam Flooding for Heavy Oil Recovery: Pore-Scale Visualization in Fractured Micromodel
    Telmadarreie, Ali
    Trivedi, Japan J.
    TRANSPORT IN POROUS MEDIA, 2016, 113 (03) : 717 - 733
  • [33] Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery
    Pei, Haihua
    Shu, Zhan
    Zhang, Guicai
    Ge, Jijiang
    Jiang, Ping
    Qin, Yu
    Cao, Xu
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 163 : 476 - 483
  • [34] Nanoparticle-stabilized CO2 foam for waterflooded residual oil recovery
    Fu, Chunkai
    Yu, Jianjia
    Liu, Ning
    FUEL, 2018, 234 : 809 - 813
  • [35] A Review on CO2 Foam for Mobility Control: Enhanced Oil Recovery
    Ahmed, Shehzad
    Elraies, Khaled Abdalla
    Tan, Isa M.
    Mumtaz, Mudassar
    ICIPEG 2016: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTEGRATED PETROLEUM ENGINEERING AND GEOSCIENCES, 2017, : 205 - 215
  • [36] Nanoparticle and Surfactant Stabilized Carbonated Water Induced In-Situ CO2 Foam: An Improved Oil Recovery Approach
    Halari, Darshan
    Yadav, Shivam
    Kesarwani, Himanshu
    Saxena, Amit
    Sharma, Shivanjali
    ENERGY & FUELS, 2024, 38 (05) : 3622 - 3634
  • [37] Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: Enhanced CO2 storage and oil recovery from mature oil reservoirs
    Rognmo, A. U.
    Heldal, S.
    Ferno, M. A.
    FUEL, 2018, 216 : 621 - 626
  • [38] CO2 mobility control using CO2 philic surfactant for enhanced oil recovery
    Sagir M.
    Tan I.M.
    Mushtaq M.
    Pervaiz M.
    Tahir M.S.
    Shahzad K.
    Journal of Petroleum Exploration and Production Technology, 2016, 6 (3) : 401 - 407
  • [39] Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic-Anionic Surfactant for Enhanced Oil Recovery
    Luan, Huoxin
    Zhou, Zhaohui
    Xu, Chongjun
    Bai, Lei
    Wang, Xiaoguang
    Han, Lu
    Zhang, Qun
    Li, Gen
    ENERGIES, 2022, 15 (03)
  • [40] Experimental and molecular dynamics study of the effect of betaine surfactant structure on CO2 foam stability
    Zhao, Jun
    Yu, Yangyang
    Wu, Kejing
    Liu, Yingying
    Zhu, Yingming
    Lu, Houfang
    Yue, Hairong
    Liang, Bin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709